MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooord Structured version   Visualization version   GIF version

Theorem eliooord 12233
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
eliooord (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))

Proof of Theorem eliooord
StepHypRef Expression
1 eliooxr 12232 . . . 4 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
2 elioo2 12216 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
31, 2syl 17 . . 3 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
43ibi 256 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶))
5 3simpc 1060 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
64, 5syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  *cxr 10073   < clt 10074  (,)cioo 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179
This theorem is referenced by:  elioo4g  12234  iccssioo2  12246  qdensere  22573  zcld  22616  reconnlem2  22630  xrge0tsms  22637  ovolioo  23336  ioorcl2  23340  itgsplitioo  23604  dvferm1lem  23747  dvferm2lem  23749  dvferm  23751  dvlt0  23768  dvivthlem1  23771  lhop1lem  23776  lhop1  23777  lhop2  23778  dvcvx  23783  ftc1lem4  23802  itgsubstlem  23811  itgsubst  23812  pilem2  24206  pilem3  24207  pigt2lt4  24208  tangtx  24257  tanabsge  24258  cosne0  24276  tanord  24284  tanregt0  24285  argimlt0  24359  logneg2  24361  divlogrlim  24381  logno1  24382  logcnlem3  24390  dvloglem  24394  logf1o2  24396  loglesqrt  24499  asinsin  24619  acoscos  24620  atanlogaddlem  24640  atanlogsub  24643  atantan  24650  atanbndlem  24652  scvxcvx  24712  lgamgulmlem2  24756  basellem8  24814  vmalogdivsum2  25227  vmalogdivsum  25228  2vmadivsumlem  25229  chpdifbndlem1  25242  selberg3lem1  25246  selberg3  25248  selberg4lem1  25249  selberg4  25250  selberg3r  25258  selberg4r  25259  selberg34r  25260  pntrlog2bndlem1  25266  pntrlog2bndlem2  25267  pntrlog2bndlem3  25268  pntrlog2bndlem4  25269  pntrlog2bndlem5  25270  pntrlog2bndlem6a  25271  pntrlog2bndlem6  25272  pntrlog2bnd  25273  pntpbnd1a  25274  pntpbnd1  25275  pntpbnd2  25276  pntpbnd  25277  pntibndlem2  25280  pntibndlem3  25281  pntibnd  25282  pntlemd  25283  pntlemb  25286  pntlemr  25291  pnt  25303  padicabv  25319  xrge0tsmsd  29785  fct2relem  30675  logdivsqrle  30728  knoppndvlem3  32505  iooelexlt  33210  relowlssretop  33211  poimir  33442  itg2gt0cn  33465  ftc1cnnclem  33483  radcnvrat  38513  cncfiooicclem1  40106  itgioocnicc  40193  iblcncfioo  40194  amgmwlem  42548
  Copyright terms: Public domain W3C validator