MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnfval Structured version   Visualization version   GIF version

Theorem psgnfval 17920
Description: Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnfval.g 𝐺 = (SymGrp‘𝐷)
psgnfval.b 𝐵 = (Base‘𝐺)
psgnfval.f 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
psgnfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfval 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
Distinct variable groups:   𝑠,𝑝,𝑤,𝑥   𝐷,𝑠,𝑤,𝑥   𝑥,𝐹   𝑤,𝑇   𝐵,𝑝
Allowed substitution hints:   𝐵(𝑥,𝑤,𝑠)   𝐷(𝑝)   𝑇(𝑥,𝑠,𝑝)   𝐹(𝑤,𝑠,𝑝)   𝐺(𝑥,𝑤,𝑠,𝑝)   𝑁(𝑥,𝑤,𝑠,𝑝)

Proof of Theorem psgnfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 psgnfval.n . 2 𝑁 = (pmSgn‘𝐷)
2 fveq2 6191 . . . . . . . . . 10 (𝑑 = 𝐷 → (SymGrp‘𝑑) = (SymGrp‘𝐷))
3 psgnfval.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
42, 3syl6eqr 2674 . . . . . . . . 9 (𝑑 = 𝐷 → (SymGrp‘𝑑) = 𝐺)
54fveq2d 6195 . . . . . . . 8 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = (Base‘𝐺))
6 psgnfval.b . . . . . . . 8 𝐵 = (Base‘𝐺)
75, 6syl6eqr 2674 . . . . . . 7 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = 𝐵)
8 rabeq 3192 . . . . . . 7 ((Base‘(SymGrp‘𝑑)) = 𝐵 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
97, 8syl 17 . . . . . 6 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
10 psgnfval.f . . . . . 6 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
119, 10syl6eqr 2674 . . . . 5 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = 𝐹)
12 fveq2 6191 . . . . . . . . . 10 (𝑑 = 𝐷 → (pmTrsp‘𝑑) = (pmTrsp‘𝐷))
1312rneqd 5353 . . . . . . . . 9 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = ran (pmTrsp‘𝐷))
14 psgnfval.t . . . . . . . . 9 𝑇 = ran (pmTrsp‘𝐷)
1513, 14syl6eqr 2674 . . . . . . . 8 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = 𝑇)
16 wrdeq 13327 . . . . . . . 8 (ran (pmTrsp‘𝑑) = 𝑇 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
1715, 16syl 17 . . . . . . 7 (𝑑 = 𝐷 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
184oveq1d 6665 . . . . . . . . 9 (𝑑 = 𝐷 → ((SymGrp‘𝑑) Σg 𝑤) = (𝐺 Σg 𝑤))
1918eqeq2d 2632 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ↔ 𝑥 = (𝐺 Σg 𝑤)))
2019anbi1d 741 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))) ↔ (𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
2117, 20rexeqbidv 3153 . . . . . 6 (𝑑 = 𝐷 → (∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
2221iotabidv 5872 . . . . 5 (𝑑 = 𝐷 → (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))) = (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
2311, 22mpteq12dv 4733 . . . 4 (𝑑 = 𝐷 → (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))))
24 df-psgn 17911 . . . 4 pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))))
25 fvex 6201 . . . . . . 7 (Base‘𝐺) ∈ V
266, 25eqeltri 2697 . . . . . 6 𝐵 ∈ V
2710, 26rabex2 4815 . . . . 5 𝐹 ∈ V
2827mptex 6486 . . . 4 (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))) ∈ V
2923, 24, 28fvmpt 6282 . . 3 (𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))))
30 fvprc 6185 . . . 4 𝐷 ∈ V → (pmSgn‘𝐷) = ∅)
31 fvprc 6185 . . . . . . . . . . . . 13 𝐷 ∈ V → (SymGrp‘𝐷) = ∅)
323, 31syl5eq 2668 . . . . . . . . . . . 12 𝐷 ∈ V → 𝐺 = ∅)
3332fveq2d 6195 . . . . . . . . . . 11 𝐷 ∈ V → (Base‘𝐺) = (Base‘∅))
34 base0 15912 . . . . . . . . . . 11 ∅ = (Base‘∅)
3533, 34syl6eqr 2674 . . . . . . . . . 10 𝐷 ∈ V → (Base‘𝐺) = ∅)
366, 35syl5eq 2668 . . . . . . . . 9 𝐷 ∈ V → 𝐵 = ∅)
37 rabeq 3192 . . . . . . . . 9 (𝐵 = ∅ → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
3836, 37syl 17 . . . . . . . 8 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
39 rab0 3955 . . . . . . . 8 {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅
4038, 39syl6eq 2672 . . . . . . 7 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅)
4110, 40syl5eq 2668 . . . . . 6 𝐷 ∈ V → 𝐹 = ∅)
4241mpteq1d 4738 . . . . 5 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))) = (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))))
43 mpt0 6021 . . . . 5 (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))) = ∅
4442, 43syl6eq 2672 . . . 4 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))) = ∅)
4530, 44eqtr4d 2659 . . 3 𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))))
4629, 45pm2.61i 176 . 2 (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
471, 46eqtri 2644 1 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  c0 3915  cmpt 4729   I cid 5023  dom cdm 5114  ran crn 5115  cio 5849  cfv 5888  (class class class)co 6650  Fincfn 7955  1c1 9937  -cneg 10267  cexp 12860  #chash 13117  Word cword 13291  Basecbs 15857   Σg cgsu 16101  SymGrpcsymg 17797  pmTrspcpmtr 17861  pmSgncpsgn 17909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-slot 15861  df-base 15863  df-psgn 17911
This theorem is referenced by:  psgnfn  17921  psgnval  17927  psgnfvalfi  17933
  Copyright terms: Public domain W3C validator