MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlmod Structured version   Visualization version   GIF version

Theorem psrlmod 19401
Description: The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
psrlmod (𝜑𝑆 ∈ LMod)

Proof of Theorem psrlmod
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2623 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
4 psrring.i . . 3 (𝜑𝐼𝑉)
5 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
63, 4, 5psrsca 19389 . 2 (𝜑𝑅 = (Scalar‘𝑆))
7 eqidd 2623 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
8 eqidd 2623 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
9 eqidd 2623 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
10 eqidd 2623 . 2 (𝜑 → (.r𝑅) = (.r𝑅))
11 eqidd 2623 . 2 (𝜑 → (1r𝑅) = (1r𝑅))
12 ringgrp 18552 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
135, 12syl 17 . . 3 (𝜑𝑅 ∈ Grp)
143, 4, 13psrgrp 19398 . 2 (𝜑𝑆 ∈ Grp)
15 eqid 2622 . . 3 ( ·𝑠𝑆) = ( ·𝑠𝑆)
16 eqid 2622 . . 3 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2622 . . 3 (Base‘𝑆) = (Base‘𝑆)
1853ad2ant1 1082 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
19 simp2 1062 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
20 simp3 1063 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
213, 15, 16, 17, 18, 19, 20psrvscacl 19393 . 2 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
22 ovex 6678 . . . . . . 7 (ℕ0𝑚 𝐼) ∈ V
2322rabex 4813 . . . . . 6 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
25 simpr1 1067 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
26 fconst6g 6094 . . . . . 6 (𝑥 ∈ (Base‘𝑅) → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2725, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
28 eqid 2622 . . . . . 6 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
29 simpr2 1068 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
303, 16, 28, 17, 29psrelbas 19379 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
31 simpr3 1069 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
323, 16, 28, 17, 31psrelbas 19379 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
335adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
34 eqid 2622 . . . . . . 7 (+g𝑅) = (+g𝑅)
35 eqid 2622 . . . . . . 7 (.r𝑅) = (.r𝑅)
3616, 34, 35ringdi 18566 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → (𝑟(.r𝑅)(𝑠(+g𝑅)𝑡)) = ((𝑟(.r𝑅)𝑠)(+g𝑅)(𝑟(.r𝑅)𝑡)))
3733, 36sylan 488 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → (𝑟(.r𝑅)(𝑠(+g𝑅)𝑡)) = ((𝑟(.r𝑅)𝑠)(+g𝑅)(𝑟(.r𝑅)𝑡)))
3824, 27, 30, 32, 37caofdi 6933 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(𝑦𝑓 (+g𝑅)𝑧)) = ((({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑦) ∘𝑓 (+g𝑅)(({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑧)))
39 eqid 2622 . . . . . 6 (+g𝑆) = (+g𝑆)
403, 17, 34, 39, 29, 31psradd 19382 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) = (𝑦𝑓 (+g𝑅)𝑧))
4140oveq2d 6666 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(𝑦(+g𝑆)𝑧)) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(𝑦𝑓 (+g𝑅)𝑧)))
423, 15, 16, 17, 35, 28, 25, 29psrvsca 19391 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑦) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑦))
433, 15, 16, 17, 35, 28, 25, 31psrvsca 19391 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑧))
4442, 43oveq12d 6668 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦) ∘𝑓 (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)) = ((({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑦) ∘𝑓 (+g𝑅)(({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑧)))
4538, 41, 443eqtr4d 2666 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(𝑦(+g𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦) ∘𝑓 (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)))
4613adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Grp)
473, 17, 39, 46, 29, 31psraddcl 19383 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) ∈ (Base‘𝑆))
483, 15, 16, 17, 35, 28, 25, 47psrvsca 19391 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦(+g𝑆)𝑧)) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(𝑦(+g𝑆)𝑧)))
49213adant3r3 1276 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
503, 15, 16, 17, 33, 25, 31psrvscacl 19393 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
513, 17, 34, 39, 49, 50psradd 19382 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦)(+g𝑆)(𝑥( ·𝑠𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦) ∘𝑓 (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)))
5245, 48, 513eqtr4d 2666 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦(+g𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦)(+g𝑆)(𝑥( ·𝑠𝑆)𝑧)))
53 simpr1 1067 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
54 simpr3 1069 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
553, 15, 16, 17, 35, 28, 53, 54psrvsca 19391 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑧))
56 simpr2 1068 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑅))
573, 15, 16, 17, 35, 28, 56, 54psrvsca 19391 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘𝑓 (.r𝑅)𝑧))
5855, 57oveq12d 6668 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑧) ∘𝑓 (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)) = ((({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑧) ∘𝑓 (+g𝑅)(({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘𝑓 (.r𝑅)𝑧)))
5923a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
603, 16, 28, 17, 54psrelbas 19379 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6153, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
62 fconst6g 6094 . . . . . 6 (𝑦 ∈ (Base‘𝑅) → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6356, 62syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
645adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
6516, 34, 35ringdir 18567 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(.r𝑅)𝑡) = ((𝑟(.r𝑅)𝑡)(+g𝑅)(𝑠(.r𝑅)𝑡)))
6664, 65sylan 488 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(.r𝑅)𝑡) = ((𝑟(.r𝑅)𝑡)(+g𝑅)(𝑠(.r𝑅)𝑡)))
6759, 60, 61, 63, 66caofdir 6934 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (+g𝑅)({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘𝑓 (.r𝑅)𝑧) = ((({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑧) ∘𝑓 (+g𝑅)(({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘𝑓 (.r𝑅)𝑧)))
6859, 53, 56ofc12 6922 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (+g𝑅)({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) = ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}))
6968oveq1d 6665 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (+g𝑅)({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘𝑓 (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘𝑓 (.r𝑅)𝑧))
7058, 67, 693eqtr2rd 2663 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘𝑓 (.r𝑅)𝑧) = ((𝑥( ·𝑠𝑆)𝑧) ∘𝑓 (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)))
7116, 34ringacl 18578 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
7264, 53, 56, 71syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
733, 15, 16, 17, 35, 28, 72, 54psrvsca 19391 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑅)𝑦)( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘𝑓 (.r𝑅)𝑧))
743, 15, 16, 17, 64, 53, 54psrvscacl 19393 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
753, 15, 16, 17, 64, 56, 54psrvscacl 19393 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
763, 17, 34, 39, 74, 75psradd 19382 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑧)(+g𝑆)(𝑦( ·𝑠𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑧) ∘𝑓 (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)))
7770, 73, 763eqtr4d 2666 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑅)𝑦)( ·𝑠𝑆)𝑧) = ((𝑥( ·𝑠𝑆)𝑧)(+g𝑆)(𝑦( ·𝑠𝑆)𝑧)))
7857oveq2d 6666 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘𝑓 (.r𝑅)𝑧)))
7916, 35ringass 18564 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(.r𝑅)𝑠)(.r𝑅)𝑡) = (𝑟(.r𝑅)(𝑠(.r𝑅)𝑡)))
8064, 79sylan 488 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(.r𝑅)𝑠)(.r𝑅)𝑡) = (𝑟(.r𝑅)(𝑠(.r𝑅)𝑡)))
8159, 61, 63, 60, 80caofass 6931 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘𝑓 (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘𝑓 (.r𝑅)𝑧)))
8259, 53, 56ofc12 6922 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) = ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}))
8382oveq1d 6665 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘𝑓 (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘𝑓 (.r𝑅)𝑧))
8478, 81, 833eqtr2rd 2663 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘𝑓 (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)))
8516, 35ringcl 18561 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
8664, 53, 56, 85syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
873, 15, 16, 17, 35, 28, 86, 54psrvsca 19391 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑅)𝑦)( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘𝑓 (.r𝑅)𝑧))
883, 15, 16, 17, 35, 28, 53, 75psrvsca 19391 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦( ·𝑠𝑆)𝑧)) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)))
8984, 87, 883eqtr4d 2666 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑅)𝑦)( ·𝑠𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦( ·𝑠𝑆)𝑧)))
905adantr 481 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
91 eqid 2622 . . . . . 6 (1r𝑅) = (1r𝑅)
9216, 91ringidcl 18568 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
9390, 92syl 17 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → (1r𝑅) ∈ (Base‘𝑅))
94 simpr 477 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
953, 15, 16, 17, 35, 28, 93, 94psrvsca 19391 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((1r𝑅)( ·𝑠𝑆)𝑥) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(1r𝑅)}) ∘𝑓 (.r𝑅)𝑥))
9623a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
973, 16, 28, 17, 94psrelbas 19379 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
9816, 35, 91ringlidm 18571 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑟) = 𝑟)
9990, 98sylan 488 . . . 4 (((𝜑𝑥 ∈ (Base‘𝑆)) ∧ 𝑟 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑟) = 𝑟)
10096, 97, 93, 99caofid0l 6925 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(1r𝑅)}) ∘𝑓 (.r𝑅)𝑥) = 𝑥)
10195, 100eqtrd 2656 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((1r𝑅)( ·𝑠𝑆)𝑥) = 𝑥)
1021, 2, 6, 7, 8, 9, 10, 11, 5, 14, 21, 52, 77, 89, 101islmodd 18869 1 (𝜑𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  {csn 4177   × cxp 5112  ccnv 5113  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857  Fincfn 7955  cn 11020  0cn0 11292  Basecbs 15857  +gcplusg 15941  .rcmulr 15942   ·𝑠 cvsca 15945  Grpcgrp 17422  1rcur 18501  Ringcrg 18547  LModclmod 18863   mPwSer cmps 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-psr 19356
This theorem is referenced by:  psrassa  19414  mpllmod  19451  mplbas2  19470  opsrlmod  19616
  Copyright terms: Public domain W3C validator