MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdadjvtx Structured version   Visualization version   GIF version

Theorem pthdadjvtx 26626
Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021.)
Assertion
Ref Expression
pthdadjvtx ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 𝐼 ∈ (0..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))

Proof of Theorem pthdadjvtx
StepHypRef Expression
1 elfzo0l 12558 . . 3 (𝐼 ∈ (0..^(#‘𝐹)) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^(#‘𝐹))))
2 simpr 477 . . . . . . . . 9 ((1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
3 pthiswlk 26623 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
4 wlkcl 26511 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) ∈ ℕ0)
5 1zzd 11408 . . . . . . . . . . . . . 14 (((#‘𝐹) ∈ ℕ0 ∧ 1 < (#‘𝐹)) → 1 ∈ ℤ)
6 nn0z 11400 . . . . . . . . . . . . . . 15 ((#‘𝐹) ∈ ℕ0 → (#‘𝐹) ∈ ℤ)
76adantr 481 . . . . . . . . . . . . . 14 (((#‘𝐹) ∈ ℕ0 ∧ 1 < (#‘𝐹)) → (#‘𝐹) ∈ ℤ)
8 simpr 477 . . . . . . . . . . . . . 14 (((#‘𝐹) ∈ ℕ0 ∧ 1 < (#‘𝐹)) → 1 < (#‘𝐹))
9 fzolb 12476 . . . . . . . . . . . . . 14 (1 ∈ (1..^(#‘𝐹)) ↔ (1 ∈ ℤ ∧ (#‘𝐹) ∈ ℤ ∧ 1 < (#‘𝐹)))
105, 7, 8, 9syl3anbrc 1246 . . . . . . . . . . . . 13 (((#‘𝐹) ∈ ℕ0 ∧ 1 < (#‘𝐹)) → 1 ∈ (1..^(#‘𝐹)))
11 0elfz 12436 . . . . . . . . . . . . . 14 ((#‘𝐹) ∈ ℕ0 → 0 ∈ (0...(#‘𝐹)))
1211adantr 481 . . . . . . . . . . . . 13 (((#‘𝐹) ∈ ℕ0 ∧ 1 < (#‘𝐹)) → 0 ∈ (0...(#‘𝐹)))
13 ax-1ne0 10005 . . . . . . . . . . . . . 14 1 ≠ 0
1413a1i 11 . . . . . . . . . . . . 13 (((#‘𝐹) ∈ ℕ0 ∧ 1 < (#‘𝐹)) → 1 ≠ 0)
1510, 12, 143jca 1242 . . . . . . . . . . . 12 (((#‘𝐹) ∈ ℕ0 ∧ 1 < (#‘𝐹)) → (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈ (0...(#‘𝐹)) ∧ 1 ≠ 0))
1615ex 450 . . . . . . . . . . 11 ((#‘𝐹) ∈ ℕ0 → (1 < (#‘𝐹) → (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈ (0...(#‘𝐹)) ∧ 1 ≠ 0)))
173, 4, 163syl 18 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (1 < (#‘𝐹) → (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈ (0...(#‘𝐹)) ∧ 1 ≠ 0)))
1817impcom 446 . . . . . . . . 9 ((1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈ (0...(#‘𝐹)) ∧ 1 ≠ 0))
19 pthdivtx 26625 . . . . . . . . 9 ((𝐹(Paths‘𝐺)𝑃 ∧ (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈ (0...(#‘𝐹)) ∧ 1 ≠ 0)) → (𝑃‘1) ≠ (𝑃‘0))
202, 18, 19syl2anc 693 . . . . . . . 8 ((1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘1) ≠ (𝑃‘0))
2120necomd 2849 . . . . . . 7 ((1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
22213adant1 1079 . . . . . 6 ((𝐼 = 0 ∧ 1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
23 fveq2 6191 . . . . . . . 8 (𝐼 = 0 → (𝑃𝐼) = (𝑃‘0))
24 oveq1 6657 . . . . . . . . . 10 (𝐼 = 0 → (𝐼 + 1) = (0 + 1))
25 0p1e1 11132 . . . . . . . . . 10 (0 + 1) = 1
2624, 25syl6eq 2672 . . . . . . . . 9 (𝐼 = 0 → (𝐼 + 1) = 1)
2726fveq2d 6195 . . . . . . . 8 (𝐼 = 0 → (𝑃‘(𝐼 + 1)) = (𝑃‘1))
2823, 27neeq12d 2855 . . . . . . 7 (𝐼 = 0 → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
29283ad2ant1 1082 . . . . . 6 ((𝐼 = 0 ∧ 1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
3022, 29mpbird 247 . . . . 5 ((𝐼 = 0 ∧ 1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
31303exp 1264 . . . 4 (𝐼 = 0 → (1 < (#‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
32 simp3 1063 . . . . . 6 ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
33 id 22 . . . . . . . 8 (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ (1..^(#‘𝐹)))
34 fzo0ss1 12498 . . . . . . . . . 10 (1..^(#‘𝐹)) ⊆ (0..^(#‘𝐹))
3534sseli 3599 . . . . . . . . 9 (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ (0..^(#‘𝐹)))
36 fzofzp1 12565 . . . . . . . . 9 (𝐼 ∈ (0..^(#‘𝐹)) → (𝐼 + 1) ∈ (0...(#‘𝐹)))
3735, 36syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 + 1) ∈ (0...(#‘𝐹)))
38 elfzoelz 12470 . . . . . . . . . . 11 (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ ℤ)
3938zcnd 11483 . . . . . . . . . 10 (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ ℂ)
40 1cnd 10056 . . . . . . . . . 10 (𝐼 ∈ (1..^(#‘𝐹)) → 1 ∈ ℂ)
4113a1i 11 . . . . . . . . . 10 (𝐼 ∈ (1..^(#‘𝐹)) → 1 ≠ 0)
4239, 40, 413jca 1242 . . . . . . . . 9 (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0))
43 addn0nid 10451 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → (𝐼 + 1) ≠ 𝐼)
4443necomd 2849 . . . . . . . . 9 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → 𝐼 ≠ (𝐼 + 1))
4542, 44syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ≠ (𝐼 + 1))
4633, 37, 453jca 1242 . . . . . . 7 (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
47463ad2ant1 1082 . . . . . 6 ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐼 ∈ (1..^(#‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
48 pthdivtx 26625 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(#‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
4932, 47, 48syl2anc 693 . . . . 5 ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 1 < (#‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
50493exp 1264 . . . 4 (𝐼 ∈ (1..^(#‘𝐹)) → (1 < (#‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
5131, 50jaoi 394 . . 3 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^(#‘𝐹))) → (1 < (#‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
521, 51syl 17 . 2 (𝐼 ∈ (0..^(#‘𝐹)) → (1 < (#‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
53523imp31 1257 1 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 𝐼 ∈ (0..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  0cn0 11292  cz 11377  ...cfz 12326  ..^cfzo 12465  #chash 13117  Walkscwlks 26492  Pathscpths 26608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-trls 26589  df-pths 26612
This theorem is referenced by:  2pthnloop  26627  upgr3v3e3cycl  27040  upgr4cycl4dv4e  27045
  Copyright terms: Public domain W3C validator