Proof of Theorem pythagtriplem3
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 6658 |
. . . . . . 7
⊢ (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐵↑2) gcd (𝐶↑2))) |
| 2 | 1 | adantl 482 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐵↑2) gcd (𝐶↑2))) |
| 3 | | nnz 11399 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
| 4 | | zsqcl 12934 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℤ → (𝐵↑2) ∈
ℤ) |
| 5 | 3, 4 | syl 17 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℕ → (𝐵↑2) ∈
ℤ) |
| 6 | 5 | 3ad2ant2 1083 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈
ℤ) |
| 7 | | nnz 11399 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
| 8 | | zsqcl 12934 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈
ℤ) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈
ℤ) |
| 10 | 9 | 3ad2ant1 1082 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈
ℤ) |
| 11 | | gcdadd 15247 |
. . . . . . . . 9
⊢ (((𝐵↑2) ∈ ℤ ∧
(𝐴↑2) ∈ ℤ)
→ ((𝐵↑2) gcd
(𝐴↑2)) = ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2)))) |
| 12 | 6, 10, 11 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2)))) |
| 13 | | gcdcom 15235 |
. . . . . . . . 9
⊢ (((𝐵↑2) ∈ ℤ ∧
(𝐴↑2) ∈ ℤ)
→ ((𝐵↑2) gcd
(𝐴↑2)) = ((𝐴↑2) gcd (𝐵↑2))) |
| 14 | 6, 10, 13 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐴↑2) gcd (𝐵↑2))) |
| 15 | 12, 14 | eqtr3d 2658 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐴↑2) gcd (𝐵↑2))) |
| 16 | 15 | adantr 481 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐴↑2) gcd (𝐵↑2))) |
| 17 | 2, 16 | eqtr3d 2658 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd (𝐶↑2)) = ((𝐴↑2) gcd (𝐵↑2))) |
| 18 | | simpl2 1065 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐵 ∈ ℕ) |
| 19 | | simpl3 1066 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐶 ∈ ℕ) |
| 20 | | sqgcd 15278 |
. . . . . 6
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵 gcd 𝐶)↑2) = ((𝐵↑2) gcd (𝐶↑2))) |
| 21 | 18, 19, 20 | syl2anc 693 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵 gcd 𝐶)↑2) = ((𝐵↑2) gcd (𝐶↑2))) |
| 22 | | simpl1 1064 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐴 ∈ ℕ) |
| 23 | | sqgcd 15278 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) |
| 24 | 22, 18, 23 | syl2anc 693 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) |
| 25 | 17, 21, 24 | 3eqtr4d 2666 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵 gcd 𝐶)↑2) = ((𝐴 gcd 𝐵)↑2)) |
| 26 | 25 | 3adant3 1081 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐵 gcd 𝐶)↑2) = ((𝐴 gcd 𝐵)↑2)) |
| 27 | | simp3l 1089 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐴 gcd 𝐵) = 1) |
| 28 | 27 | oveq1d 6665 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐴 gcd 𝐵)↑2) = (1↑2)) |
| 29 | 26, 28 | eqtrd 2656 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐵 gcd 𝐶)↑2) = (1↑2)) |
| 30 | 3 | 3ad2ant2 1083 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℤ) |
| 31 | | nnz 11399 |
. . . . . . 7
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
| 32 | 31 | 3ad2ant3 1084 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℤ) |
| 33 | 30, 32 | gcdcld 15230 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 gcd 𝐶) ∈
ℕ0) |
| 34 | 33 | nn0red 11352 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 gcd 𝐶) ∈ ℝ) |
| 35 | 34 | 3ad2ant1 1082 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) ∈ ℝ) |
| 36 | 33 | nn0ge0d 11354 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐵 gcd 𝐶)) |
| 37 | 36 | 3ad2ant1 1082 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐵 gcd 𝐶)) |
| 38 | | 1re 10039 |
. . . 4
⊢ 1 ∈
ℝ |
| 39 | | 0le1 10551 |
. . . 4
⊢ 0 ≤
1 |
| 40 | | sq11 12936 |
. . . 4
⊢ ((((𝐵 gcd 𝐶) ∈ ℝ ∧ 0 ≤ (𝐵 gcd 𝐶)) ∧ (1 ∈ ℝ ∧ 0 ≤ 1))
→ (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔
(𝐵 gcd 𝐶) = 1)) |
| 41 | 38, 39, 40 | mpanr12 721 |
. . 3
⊢ (((𝐵 gcd 𝐶) ∈ ℝ ∧ 0 ≤ (𝐵 gcd 𝐶)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1)) |
| 42 | 35, 37, 41 | syl2anc 693 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1)) |
| 43 | 29, 42 | mpbid 222 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1) |