MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusabl Structured version   Visualization version   GIF version

Theorem qusabl 18268
Description: If 𝑌 is a subgroup of the abelian group 𝐺, then 𝐻 = 𝐺 / 𝑌 is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypothesis
Ref Expression
qusabl.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
Assertion
Ref Expression
qusabl ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)

Proof of Theorem qusabl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablnsg 18250 . . . . 5 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
21eleq2d 2687 . . . 4 (𝐺 ∈ Abel → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ (SubGrp‘𝐺)))
32biimpar 502 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (NrmSGrp‘𝐺))
4 qusabl.h . . . 4 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
54qusgrp 17649 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
63, 5syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
7 vex 3203 . . . . . . 7 𝑥 ∈ V
87elqs 7799 . . . . . 6 (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆))
94a1i 11 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
10 eqidd 2623 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐺) = (Base‘𝐺))
11 ovexd 6680 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝑆) ∈ V)
12 simpl 473 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Abel)
139, 10, 11, 12qusbas 16205 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((Base‘𝐺) / (𝐺 ~QG 𝑆)) = (Base‘𝐻))
1413eleq2d 2687 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝐻)))
158, 14syl5bbr 274 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ↔ 𝑥 ∈ (Base‘𝐻)))
16 vex 3203 . . . . . . 7 𝑦 ∈ V
1716elqs 7799 . . . . . 6 (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆))
1813eleq2d 2687 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝐻)))
1917, 18syl5bbr 274 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆) ↔ 𝑦 ∈ (Base‘𝐻)))
2015, 19anbi12d 747 . . . 4 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))))
21 reeanv 3107 . . . . 5 (∃𝑎 ∈ (Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)))
22 eqid 2622 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
23 eqid 2622 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
2422, 23ablcom 18210 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
25243expb 1266 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
2625adantlr 751 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
2726eceq1d 7783 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
283adantr 481 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑆 ∈ (NrmSGrp‘𝐺))
29 simprl 794 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑎 ∈ (Base‘𝐺))
30 simprr 796 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑏 ∈ (Base‘𝐺))
31 eqid 2622 . . . . . . . . . 10 (+g𝐻) = (+g𝐻)
324, 22, 23, 31qusadd 17651 . . . . . . . . 9 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆))
3328, 29, 30, 32syl3anc 1326 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆))
344, 22, 23, 31qusadd 17651 . . . . . . . . 9 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺)) → ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
3528, 30, 29, 34syl3anc 1326 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
3627, 33, 353eqtr4d 2666 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
37 oveq12 6659 . . . . . . . 8 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)))
38 oveq12 6659 . . . . . . . . 9 ((𝑦 = [𝑏](𝐺 ~QG 𝑆) ∧ 𝑥 = [𝑎](𝐺 ~QG 𝑆)) → (𝑦(+g𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
3938ancoms 469 . . . . . . . 8 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑦(+g𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
4037, 39eqeq12d 2637 . . . . . . 7 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → ((𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥) ↔ ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆))))
4136, 40syl5ibrcom 237 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4241rexlimdvva 3038 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4321, 42syl5bir 233 . . . 4 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4420, 43sylbird 250 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4544ralrimivv 2970 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))
46 eqid 2622 . . 3 (Base‘𝐻) = (Base‘𝐻)
4746, 31isabl2 18201 . 2 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
486, 45, 47sylanbrc 698 1 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cfv 5888  (class class class)co 6650  [cec 7740   / cqs 7741  Basecbs 15857  +gcplusg 15941   /s cqus 16165  Grpcgrp 17422  SubGrpcsubg 17588  NrmSGrpcnsg 17589   ~QG cqg 17590  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-nsg 17592  df-eqg 17593  df-cmn 18195  df-abl 18196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator