MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnv0 Structured version   Visualization version   GIF version

Theorem radcnv0 24170
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
Assertion
Ref Expression
radcnv0 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝐺(𝑥,𝑛)

Proof of Theorem radcnv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0red 10041 . 2 (𝜑 → 0 ∈ ℝ)
2 nn0uz 11722 . . 3 0 = (ℤ‘0)
3 0zd 11389 . . 3 (𝜑 → 0 ∈ ℤ)
4 snfi 8038 . . . 4 {0} ∈ Fin
54a1i 11 . . 3 (𝜑 → {0} ∈ Fin)
6 0nn0 11307 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
87snssd 4340 . . 3 (𝜑 → {0} ⊆ ℕ0)
9 ifid 4125 . . . 4 if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘)
10 0cnd 10033 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
11 pser.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
1211pserval2 24165 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1310, 12sylan 488 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1413adantr 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
15 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
16 elnn0 11294 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
1715, 16sylib 208 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
1817ord 392 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
19 velsn 4193 . . . . . . . . . . 11 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2018, 19syl6ibr 242 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0}))
2120con1d 139 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ))
2221imp 445 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ)
23220expd 13024 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0)
2423oveq2d 6666 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
25 radcnv.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
2625ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2726adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴𝑘) ∈ ℂ)
2827mul01d 10235 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · 0) = 0)
2914, 24, 283eqtrd 2660 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0)
3029ifeq2da 4117 . . . 4 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
319, 30syl5eqr 2670 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
328sselda 3603 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝑘 ∈ ℕ0)
3311, 25, 10psergf 24166 . . . . 5 (𝜑 → (𝐺‘0):ℕ0⟶ℂ)
3433ffvelrnda 6359 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ)
3532, 34syldan 487 . . 3 ((𝜑𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ)
362, 3, 5, 8, 31, 35fsumcvg3 14460 . 2 (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ )
37 fveq2 6191 . . . . 5 (𝑟 = 0 → (𝐺𝑟) = (𝐺‘0))
3837seqeq3d 12809 . . . 4 (𝑟 = 0 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺‘0)))
3938eleq1d 2686 . . 3 (𝑟 = 0 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ ))
4039elrab 3363 . 2 (0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ (0 ∈ ℝ ∧ seq0( + , (𝐺‘0)) ∈ dom ⇝ ))
411, 36, 40sylanbrc 698 1 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  {crab 2916  ifcif 4086  {csn 4177  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  cn 11020  0cn0 11292  seqcseq 12801  cexp 12860  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  radcnvcl  24171  radcnvrat  38513
  Copyright terms: Public domain W3C validator