| Step | Hyp | Ref
| Expression |
| 1 | | isperp.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | isperp.d |
. . . 4
⊢ − =
(dist‘𝐺) |
| 3 | | isperp.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
| 4 | | isperp.l |
. . . 4
⊢ 𝐿 = (LineG‘𝐺) |
| 5 | | eqid 2622 |
. . . 4
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
| 6 | | isperp.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝐺 ∈ TarskiG) |
| 8 | | ragperp.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
| 9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝐵 ∈ ran 𝐿) |
| 10 | | simprr 796 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝐵) |
| 11 | 1, 4, 3, 7, 9, 10 | tglnpt 25444 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝑃) |
| 12 | | isperp.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| 13 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝐴 ∈ ran 𝐿) |
| 14 | | inss1 3833 |
. . . . . . 7
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| 15 | | ragperp.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| 16 | 14, 15 | sseldi 3601 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 17 | 16 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑋 ∈ 𝐴) |
| 18 | 1, 4, 3, 7, 13, 17 | tglnpt 25444 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑋 ∈ 𝑃) |
| 19 | | simprl 794 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑢 ∈ 𝐴) |
| 20 | 1, 4, 3, 7, 13, 19 | tglnpt 25444 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑢 ∈ 𝑃) |
| 21 | | ragperp.v |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ 𝐵) |
| 22 | 21 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑉 ∈ 𝐵) |
| 23 | 1, 4, 3, 7, 9, 22 | tglnpt 25444 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑉 ∈ 𝑃) |
| 24 | | ragperp.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| 25 | 24 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑈 ∈ 𝐴) |
| 26 | 1, 4, 3, 7, 13, 25 | tglnpt 25444 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑈 ∈ 𝑃) |
| 27 | | ragperp.r |
. . . . . . . 8
⊢ (𝜑 → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) |
| 28 | 27 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) |
| 29 | | ragperp.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ≠ 𝑋) |
| 30 | 29 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑈 ≠ 𝑋) |
| 31 | 24 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈 ∈ 𝐴) |
| 32 | 6 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐺 ∈ TarskiG) |
| 33 | 18 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋 ∈ 𝑃) |
| 34 | 20 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢 ∈ 𝑃) |
| 35 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → ¬ 𝑋 = 𝑢) |
| 36 | 35 | neqned 2801 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋 ≠ 𝑢) |
| 37 | 12 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 ∈ ran 𝐿) |
| 38 | 16 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋 ∈ 𝐴) |
| 39 | 19 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢 ∈ 𝐴) |
| 40 | 1, 3, 4, 32, 33, 34, 36, 36, 37, 38, 39 | tglinethru 25531 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 = (𝑋𝐿𝑢)) |
| 41 | 31, 40 | eleqtrd 2703 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈 ∈ (𝑋𝐿𝑢)) |
| 42 | 41 | ex 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (¬ 𝑋 = 𝑢 → 𝑈 ∈ (𝑋𝐿𝑢))) |
| 43 | 42 | orrd 393 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (𝑋 = 𝑢 ∨ 𝑈 ∈ (𝑋𝐿𝑢))) |
| 44 | 43 | orcomd 403 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (𝑈 ∈ (𝑋𝐿𝑢) ∨ 𝑋 = 𝑢)) |
| 45 | 1, 2, 3, 4, 5, 7, 26, 18, 23, 20, 28, 30, 44 | ragcol 25594 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑢𝑋𝑉”〉 ∈ (∟G‘𝐺)) |
| 46 | 1, 2, 3, 4, 5, 7, 20, 18, 23, 45 | ragcom 25593 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑉𝑋𝑢”〉 ∈ (∟G‘𝐺)) |
| 47 | | ragperp.2 |
. . . . . 6
⊢ (𝜑 → 𝑉 ≠ 𝑋) |
| 48 | 47 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑉 ≠ 𝑋) |
| 49 | 21 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉 ∈ 𝐵) |
| 50 | 6 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐺 ∈ TarskiG) |
| 51 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋 ∈ 𝑃) |
| 52 | 11 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣 ∈ 𝑃) |
| 53 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → ¬ 𝑋 = 𝑣) |
| 54 | 53 | neqned 2801 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋 ≠ 𝑣) |
| 55 | 8 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 ∈ ran 𝐿) |
| 56 | | inss2 3834 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| 57 | 56, 15 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 58 | 57 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋 ∈ 𝐵) |
| 59 | 10 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣 ∈ 𝐵) |
| 60 | 1, 3, 4, 50, 51, 52, 54, 54, 55, 58, 59 | tglinethru 25531 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 = (𝑋𝐿𝑣)) |
| 61 | 49, 60 | eleqtrd 2703 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉 ∈ (𝑋𝐿𝑣)) |
| 62 | 61 | ex 450 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (¬ 𝑋 = 𝑣 → 𝑉 ∈ (𝑋𝐿𝑣))) |
| 63 | 62 | orrd 393 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (𝑋 = 𝑣 ∨ 𝑉 ∈ (𝑋𝐿𝑣))) |
| 64 | 63 | orcomd 403 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (𝑉 ∈ (𝑋𝐿𝑣) ∨ 𝑋 = 𝑣)) |
| 65 | 1, 2, 3, 4, 5, 7, 23, 18, 20, 11, 46, 48, 64 | ragcol 25594 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑣𝑋𝑢”〉 ∈ (∟G‘𝐺)) |
| 66 | 1, 2, 3, 4, 5, 7, 11, 18, 20, 65 | ragcom 25593 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
| 67 | 66 | ralrimivva 2971 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
| 68 | 1, 2, 3, 4, 6, 12,
8, 15 | isperp2 25610 |
. 2
⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 69 | 67, 68 | mpbird 247 |
1
⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) |