MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragperp Structured version   Visualization version   GIF version

Theorem ragperp 25612
Description: Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
ragperp.b (𝜑𝐵 ∈ ran 𝐿)
ragperp.x (𝜑𝑋 ∈ (𝐴𝐵))
ragperp.u (𝜑𝑈𝐴)
ragperp.v (𝜑𝑉𝐵)
ragperp.1 (𝜑𝑈𝑋)
ragperp.2 (𝜑𝑉𝑋)
ragperp.r (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragperp (𝜑𝐴(⟂G‘𝐺)𝐵)

Proof of Theorem ragperp
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . 4 𝑃 = (Base‘𝐺)
2 isperp.d . . . 4 = (dist‘𝐺)
3 isperp.i . . . 4 𝐼 = (Itv‘𝐺)
4 isperp.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2622 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 481 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐺 ∈ TarskiG)
8 ragperp.b . . . . . 6 (𝜑𝐵 ∈ ran 𝐿)
98adantr 481 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐵 ∈ ran 𝐿)
10 simprr 796 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝐵)
111, 4, 3, 7, 9, 10tglnpt 25444 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝑃)
12 isperp.a . . . . . 6 (𝜑𝐴 ∈ ran 𝐿)
1312adantr 481 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐴 ∈ ran 𝐿)
14 inss1 3833 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
15 ragperp.x . . . . . . 7 (𝜑𝑋 ∈ (𝐴𝐵))
1614, 15sseldi 3601 . . . . . 6 (𝜑𝑋𝐴)
1716adantr 481 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝐴)
181, 4, 3, 7, 13, 17tglnpt 25444 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝑃)
19 simprl 794 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝐴)
201, 4, 3, 7, 13, 19tglnpt 25444 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝑃)
21 ragperp.v . . . . . . 7 (𝜑𝑉𝐵)
2221adantr 481 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝐵)
231, 4, 3, 7, 9, 22tglnpt 25444 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑃)
24 ragperp.u . . . . . . . . 9 (𝜑𝑈𝐴)
2524adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝐴)
261, 4, 3, 7, 13, 25tglnpt 25444 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑃)
27 ragperp.r . . . . . . . 8 (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
2827adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
29 ragperp.1 . . . . . . . 8 (𝜑𝑈𝑋)
3029adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑋)
3124ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈𝐴)
326ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐺 ∈ TarskiG)
3318adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑃)
3420adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝑃)
35 simpr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → ¬ 𝑋 = 𝑢)
3635neqned 2801 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑢)
3712ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 ∈ ran 𝐿)
3816ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝐴)
3919adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝐴)
401, 3, 4, 32, 33, 34, 36, 36, 37, 38, 39tglinethru 25531 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 = (𝑋𝐿𝑢))
4131, 40eleqtrd 2703 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈 ∈ (𝑋𝐿𝑢))
4241ex 450 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4342orrd 393 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4443orcomd 403 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑈 ∈ (𝑋𝐿𝑢) ∨ 𝑋 = 𝑢))
451, 2, 3, 4, 5, 7, 26, 18, 23, 20, 28, 30, 44ragcol 25594 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑉”⟩ ∈ (∟G‘𝐺))
461, 2, 3, 4, 5, 7, 20, 18, 23, 45ragcom 25593 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑉𝑋𝑢”⟩ ∈ (∟G‘𝐺))
47 ragperp.2 . . . . . 6 (𝜑𝑉𝑋)
4847adantr 481 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑋)
4921ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉𝐵)
506ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐺 ∈ TarskiG)
5118adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑃)
5211adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝑃)
53 simpr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → ¬ 𝑋 = 𝑣)
5453neqned 2801 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑣)
558ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 ∈ ran 𝐿)
56 inss2 3834 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ 𝐵
5756, 15sseldi 3601 . . . . . . . . . . 11 (𝜑𝑋𝐵)
5857ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝐵)
5910adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝐵)
601, 3, 4, 50, 51, 52, 54, 54, 55, 58, 59tglinethru 25531 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 = (𝑋𝐿𝑣))
6149, 60eleqtrd 2703 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉 ∈ (𝑋𝐿𝑣))
6261ex 450 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6362orrd 393 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6463orcomd 403 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑉 ∈ (𝑋𝐿𝑣) ∨ 𝑋 = 𝑣))
651, 2, 3, 4, 5, 7, 23, 18, 20, 11, 46, 48, 64ragcol 25594 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑣𝑋𝑢”⟩ ∈ (∟G‘𝐺))
661, 2, 3, 4, 5, 7, 11, 18, 20, 65ragcom 25593 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
6766ralrimivva 2971 . 2 (𝜑 → ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
681, 2, 3, 4, 6, 12, 8, 15isperp2 25610 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
6967, 68mpbird 247 1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  cin 3573   class class class wbr 4653  ran crn 5115  cfv 5888  (class class class)co 6650  ⟨“cs3 13587  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  footex  25613  colperpexlem3  25624  mideulem2  25626  lmimid  25686  hypcgrlem1  25691  hypcgrlem2  25692  trgcopyeulem  25697
  Copyright terms: Public domain W3C validator