| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ragperp | Structured version Visualization version Unicode version | ||
| Description: Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
| Ref | Expression |
|---|---|
| isperp.p |
|
| isperp.d |
|
| isperp.i |
|
| isperp.l |
|
| isperp.g |
|
| isperp.a |
|
| ragperp.b |
|
| ragperp.x |
|
| ragperp.u |
|
| ragperp.v |
|
| ragperp.1 |
|
| ragperp.2 |
|
| ragperp.r |
|
| Ref | Expression |
|---|---|
| ragperp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isperp.p |
. . . 4
| |
| 2 | isperp.d |
. . . 4
| |
| 3 | isperp.i |
. . . 4
| |
| 4 | isperp.l |
. . . 4
| |
| 5 | eqid 2622 |
. . . 4
| |
| 6 | isperp.g |
. . . . 5
| |
| 7 | 6 | adantr 481 |
. . . 4
|
| 8 | ragperp.b |
. . . . . 6
| |
| 9 | 8 | adantr 481 |
. . . . 5
|
| 10 | simprr 796 |
. . . . 5
| |
| 11 | 1, 4, 3, 7, 9, 10 | tglnpt 25444 |
. . . 4
|
| 12 | isperp.a |
. . . . . 6
| |
| 13 | 12 | adantr 481 |
. . . . 5
|
| 14 | inss1 3833 |
. . . . . . 7
| |
| 15 | ragperp.x |
. . . . . . 7
| |
| 16 | 14, 15 | sseldi 3601 |
. . . . . 6
|
| 17 | 16 | adantr 481 |
. . . . 5
|
| 18 | 1, 4, 3, 7, 13, 17 | tglnpt 25444 |
. . . 4
|
| 19 | simprl 794 |
. . . . 5
| |
| 20 | 1, 4, 3, 7, 13, 19 | tglnpt 25444 |
. . . 4
|
| 21 | ragperp.v |
. . . . . . 7
| |
| 22 | 21 | adantr 481 |
. . . . . 6
|
| 23 | 1, 4, 3, 7, 9, 22 | tglnpt 25444 |
. . . . 5
|
| 24 | ragperp.u |
. . . . . . . . 9
| |
| 25 | 24 | adantr 481 |
. . . . . . . 8
|
| 26 | 1, 4, 3, 7, 13, 25 | tglnpt 25444 |
. . . . . . 7
|
| 27 | ragperp.r |
. . . . . . . 8
| |
| 28 | 27 | adantr 481 |
. . . . . . 7
|
| 29 | ragperp.1 |
. . . . . . . 8
| |
| 30 | 29 | adantr 481 |
. . . . . . 7
|
| 31 | 24 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 32 | 6 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 33 | 18 | adantr 481 |
. . . . . . . . . . . 12
|
| 34 | 20 | adantr 481 |
. . . . . . . . . . . 12
|
| 35 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | neqned 2801 |
. . . . . . . . . . . 12
|
| 37 | 12 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 38 | 16 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 39 | 19 | adantr 481 |
. . . . . . . . . . . 12
|
| 40 | 1, 3, 4, 32, 33, 34, 36, 36, 37, 38, 39 | tglinethru 25531 |
. . . . . . . . . . 11
|
| 41 | 31, 40 | eleqtrd 2703 |
. . . . . . . . . 10
|
| 42 | 41 | ex 450 |
. . . . . . . . 9
|
| 43 | 42 | orrd 393 |
. . . . . . . 8
|
| 44 | 43 | orcomd 403 |
. . . . . . 7
|
| 45 | 1, 2, 3, 4, 5, 7, 26, 18, 23, 20, 28, 30, 44 | ragcol 25594 |
. . . . . 6
|
| 46 | 1, 2, 3, 4, 5, 7, 20, 18, 23, 45 | ragcom 25593 |
. . . . 5
|
| 47 | ragperp.2 |
. . . . . 6
| |
| 48 | 47 | adantr 481 |
. . . . 5
|
| 49 | 21 | ad2antrr 762 |
. . . . . . . . 9
|
| 50 | 6 | ad2antrr 762 |
. . . . . . . . . 10
|
| 51 | 18 | adantr 481 |
. . . . . . . . . 10
|
| 52 | 11 | adantr 481 |
. . . . . . . . . 10
|
| 53 | simpr 477 |
. . . . . . . . . . 11
| |
| 54 | 53 | neqned 2801 |
. . . . . . . . . 10
|
| 55 | 8 | ad2antrr 762 |
. . . . . . . . . 10
|
| 56 | inss2 3834 |
. . . . . . . . . . . 12
| |
| 57 | 56, 15 | sseldi 3601 |
. . . . . . . . . . 11
|
| 58 | 57 | ad2antrr 762 |
. . . . . . . . . 10
|
| 59 | 10 | adantr 481 |
. . . . . . . . . 10
|
| 60 | 1, 3, 4, 50, 51, 52, 54, 54, 55, 58, 59 | tglinethru 25531 |
. . . . . . . . 9
|
| 61 | 49, 60 | eleqtrd 2703 |
. . . . . . . 8
|
| 62 | 61 | ex 450 |
. . . . . . 7
|
| 63 | 62 | orrd 393 |
. . . . . 6
|
| 64 | 63 | orcomd 403 |
. . . . 5
|
| 65 | 1, 2, 3, 4, 5, 7, 23, 18, 20, 11, 46, 48, 64 | ragcol 25594 |
. . . 4
|
| 66 | 1, 2, 3, 4, 5, 7, 11, 18, 20, 65 | ragcom 25593 |
. . 3
|
| 67 | 66 | ralrimivva 2971 |
. 2
|
| 68 | 1, 2, 3, 4, 6, 12, 8, 15 | isperp2 25610 |
. 2
|
| 69 | 67, 68 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-s2 13593 df-s3 13594 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 df-cgrg 25406 df-mir 25548 df-rag 25589 df-perpg 25591 |
| This theorem is referenced by: footex 25613 colperpexlem3 25624 mideulem2 25626 lmimid 25686 hypcgrlem1 25691 hypcgrlem2 25692 trgcopyeulem 25697 |
| Copyright terms: Public domain | W3C validator |