| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rebtwnz | Structured version Visualization version Unicode version | ||
| Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.) |
| Ref | Expression |
|---|---|
| rebtwnz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl 10344 |
. . 3
| |
| 2 | zbtwnre 11786 |
. . 3
| |
| 3 | 1, 2 | syl 17 |
. 2
|
| 4 | znegcl 11412 |
. . . 4
| |
| 5 | znegcl 11412 |
. . . . 5
| |
| 6 | zcn 11382 |
. . . . . 6
| |
| 7 | zcn 11382 |
. . . . . 6
| |
| 8 | negcon2 10334 |
. . . . . 6
| |
| 9 | 6, 7, 8 | syl2an 494 |
. . . . 5
|
| 10 | 5, 9 | reuhyp 4896 |
. . . 4
|
| 11 | breq2 4657 |
. . . . 5
| |
| 12 | breq1 4656 |
. . . . 5
| |
| 13 | 11, 12 | anbi12d 747 |
. . . 4
|
| 14 | 4, 10, 13 | reuxfr 4894 |
. . 3
|
| 15 | zre 11381 |
. . . . . 6
| |
| 16 | leneg 10531 |
. . . . . . . 8
| |
| 17 | 16 | ancoms 469 |
. . . . . . 7
|
| 18 | peano2rem 10348 |
. . . . . . . . 9
| |
| 19 | ltneg 10528 |
. . . . . . . . 9
| |
| 20 | 18, 19 | sylan 488 |
. . . . . . . 8
|
| 21 | 1re 10039 |
. . . . . . . . 9
| |
| 22 | ltsubadd 10498 |
. . . . . . . . 9
| |
| 23 | 21, 22 | mp3an2 1412 |
. . . . . . . 8
|
| 24 | recn 10026 |
. . . . . . . . . . 11
| |
| 25 | ax-1cn 9994 |
. . . . . . . . . . 11
| |
| 26 | negsubdi 10337 |
. . . . . . . . . . 11
| |
| 27 | 24, 25, 26 | sylancl 694 |
. . . . . . . . . 10
|
| 28 | 27 | adantr 481 |
. . . . . . . . 9
|
| 29 | 28 | breq2d 4665 |
. . . . . . . 8
|
| 30 | 20, 23, 29 | 3bitr3d 298 |
. . . . . . 7
|
| 31 | 17, 30 | anbi12d 747 |
. . . . . 6
|
| 32 | 15, 31 | sylan2 491 |
. . . . 5
|
| 33 | 32 | bicomd 213 |
. . . 4
|
| 34 | 33 | reubidva 3125 |
. . 3
|
| 35 | 14, 34 | syl5bb 272 |
. 2
|
| 36 | 3, 35 | mpbid 222 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 |
| This theorem is referenced by: flcl 12596 fllelt 12598 flflp1 12608 flbi 12617 ltflcei 33397 |
| Copyright terms: Public domain | W3C validator |