Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltflcei Structured version   Visualization version   GIF version

Theorem ltflcei 33397
Description: Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
ltflcei ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))

Proof of Theorem ltflcei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 12601 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 766 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 renegcl 10344 . . . . . . . . 9 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
4 flval 12595 . . . . . . . . 9 (-𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
53, 4syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
65ad3antlr 767 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
7 fllep1 12602 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
87adantl 482 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ ((⌊‘𝐴) + 1))
9 reflcl 12597 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
10 peano2re 10209 . . . . . . . . . . . . . . . . 17 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
119, 10syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
1211adantl 482 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
13 letr 10131 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
1412, 13mpd3an3 1425 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
158, 14mpan2d 710 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴𝐵 ≤ ((⌊‘𝐴) + 1)))
16 leneg 10531 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1711, 16sylan2 491 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1815, 17sylibd 229 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
1918ancoms 469 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
20 ltneg 10528 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
219, 20sylan 488 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
229recnd 10068 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
23 ax-1cn 9994 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
24 negdi2 10339 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((⌊‘𝐴) + 1) = (-(⌊‘𝐴) − 1))
2524oveq1d 6665 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (-((⌊‘𝐴) + 1) + 1) = ((-(⌊‘𝐴) − 1) + 1))
26 negcl 10281 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝐴) ∈ ℂ → -(⌊‘𝐴) ∈ ℂ)
27 npcan 10290 . . . . . . . . . . . . . . . . . 18 ((-(⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2826, 27sylan 488 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2925, 28eqtr2d 2657 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3022, 23, 29sylancl 694 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3130breq2d 4665 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3231adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3321, 32bitrd 268 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3433biimpd 219 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 → -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3519, 34anim12d 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴 ∧ (⌊‘𝐴) < 𝐵) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3635ancomsd 470 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) < 𝐵𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3736impl 650 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
38 flcl 12596 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
3938peano2zd 11485 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℤ)
4039znegcld 11484 . . . . . . . . . 10 (𝐴 ∈ ℝ → -((⌊‘𝐴) + 1) ∈ ℤ)
41 rebtwnz 11787 . . . . . . . . . . 11 (-𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
423, 41syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
43 breq1 4656 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 ≤ -𝐵 ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
44 oveq1 6657 . . . . . . . . . . . . 13 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 + 1) = (-((⌊‘𝐴) + 1) + 1))
4544breq2d 4665 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (-𝐵 < (𝑥 + 1) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
4643, 45anbi12d 747 . . . . . . . . . . 11 (𝑥 = -((⌊‘𝐴) + 1) → ((𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)) ↔ (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
4746riota2 6633 . . . . . . . . . 10 ((-((⌊‘𝐴) + 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4840, 42, 47syl2an 494 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4948ad2antrr 762 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
5037, 49mpbid 222 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1))
516, 50eqtrd 2656 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = -((⌊‘𝐴) + 1))
5238zcnd 11483 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
53 peano2cn 10208 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℂ → ((⌊‘𝐴) + 1) ∈ ℂ)
5452, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℂ)
553flcld 12599 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℤ)
5655zcnd 11483 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℂ)
57 negcon2 10334 . . . . . . . 8 ((((⌊‘𝐴) + 1) ∈ ℂ ∧ (⌊‘-𝐵) ∈ ℂ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5854, 56, 57syl2an 494 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5958ad2antrr 762 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
6051, 59mpbird 247 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((⌊‘𝐴) + 1) = -(⌊‘-𝐵))
612, 60breqtrd 4679 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < -(⌊‘-𝐵))
6261ex 450 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (𝐵𝐴𝐴 < -(⌊‘-𝐵)))
63 ltnle 10117 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
64 ceige 12644 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ≤ -(⌊‘-𝐵))
6564adantl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ -(⌊‘-𝐵))
66 ceicl 12642 . . . . . . . . 9 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℤ)
6766zred 11482 . . . . . . . 8 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℝ)
6867adantl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(⌊‘-𝐵) ∈ ℝ)
69 ltletr 10129 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -(⌊‘-𝐵) ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7068, 69mpd3an3 1425 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7165, 70mpan2d 710 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < -(⌊‘-𝐵)))
7263, 71sylbird 250 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7372adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7462, 73pm2.61d 170 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → 𝐴 < -(⌊‘-𝐵))
75 flval 12595 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
7675ad3antrrr 766 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
77 ceim1l 12646 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) < 𝐵)
7877adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) < 𝐵)
79 peano2rem 10348 . . . . . . . . . . . . . 14 (-(⌊‘-𝐵) ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8067, 79syl 17 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8180adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) ∈ ℝ)
82 ltleletr 10130 . . . . . . . . . . . . 13 (((-(⌊‘-𝐵) − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
83823com13 1270 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-(⌊‘-𝐵) − 1) ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8481, 83mpd3an3 1425 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8578, 84mpand 711 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8666zcnd 11483 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℂ)
87 npcan 10290 . . . . . . . . . . . . . 14 ((-(⌊‘-𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8886, 23, 87sylancl 694 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8988breq2d 4665 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐴 < ((-(⌊‘-𝐵) − 1) + 1) ↔ 𝐴 < -(⌊‘-𝐵)))
9089biimprd 238 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9190adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9285, 91anim12d 586 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴𝐴 < -(⌊‘-𝐵)) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9392ancomsd 470 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < -(⌊‘-𝐵) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9493impl 650 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
95 peano2zm 11420 . . . . . . . . . 10 (-(⌊‘-𝐵) ∈ ℤ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
9666, 95syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
97 rebtwnz 11787 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
98 breq1 4656 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥𝐴 ↔ (-(⌊‘-𝐵) − 1) ≤ 𝐴))
99 oveq1 6657 . . . . . . . . . . . 12 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥 + 1) = ((-(⌊‘-𝐵) − 1) + 1))
10099breq2d 4665 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
10198, 100anbi12d 747 . . . . . . . . . 10 (𝑥 = (-(⌊‘-𝐵) − 1) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
102101riota2 6633 . . . . . . . . 9 (((-(⌊‘-𝐵) − 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10396, 97, 102syl2anr 495 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
104103ad2antrr 762 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10594, 104mpbid 222 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1))
10676, 105eqtrd 2656 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (-(⌊‘-𝐵) − 1))
10777ad3antlr 767 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (-(⌊‘-𝐵) − 1) < 𝐵)
108106, 107eqbrtrd 4675 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) < 𝐵)
109108ex 450 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (𝐵𝐴 → (⌊‘𝐴) < 𝐵))
110 flle 12600 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
111110adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
1129adantr 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
113 lelttr 10128 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
1141133coml 1272 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
115112, 114mpd3an3 1425 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
116111, 115mpand 711 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (⌊‘𝐴) < 𝐵))
11763, 116sylbird 250 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
118117adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
119109, 118pm2.61d 170 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (⌊‘𝐴) < 𝐵)
12074, 119impbida 877 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  ∃!wreu 2914   class class class wbr 4653  cfv 5888  crio 6610  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  -cneg 10267  cz 11377  cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fl 12593
This theorem is referenced by:  leceifl  33398
  Copyright terms: Public domain W3C validator