MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recld2 Structured version   Visualization version   GIF version

Theorem recld2 22617
Description: The real numbers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
recld2 ℝ ∈ (Clsd‘𝐽)

Proof of Theorem recld2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 3737 . . 3 (ℂ ∖ ℝ) ⊆ ℂ
2 eldifi 3732 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → 𝑥 ∈ ℂ)
32imcld 13935 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℝ)
43recnd 10068 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ∈ ℂ)
5 eldifn 3733 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ¬ 𝑥 ∈ ℝ)
6 reim0b 13859 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
72, 6syl 17 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
87necon3bbid 2831 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (¬ 𝑥 ∈ ℝ ↔ (ℑ‘𝑥) ≠ 0))
95, 8mpbid 222 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (ℑ‘𝑥) ≠ 0)
104, 9absrpcld 14187 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ+)
11 cnxmet 22576 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
1211a1i 11 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (abs ∘ − ) ∈ (∞Met‘ℂ))
134abscld 14175 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
1413rexrd 10089 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ*)
15 elbl 22193 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(ℑ‘𝑥)) ∈ ℝ*) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
1612, 2, 14, 15syl3anc 1326 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ↔ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))))
17 simprl 794 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ ℂ)
182adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
19 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
2019recnd 10068 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
2118, 20imsubd 13957 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = ((ℑ‘𝑥) − (ℑ‘𝑦)))
22 reim0 13858 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (ℑ‘𝑦) = 0)
2322adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
2423oveq2d 6666 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − (ℑ‘𝑦)) = ((ℑ‘𝑥) − 0))
254adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
2625subid1d 10381 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝑥) − 0) = (ℑ‘𝑥))
2721, 24, 263eqtrd 2660 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥𝑦)) = (ℑ‘𝑥))
2827fveq2d 6195 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) = (abs‘(ℑ‘𝑥)))
2918, 20subcld 10392 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℂ)
30 absimle 14049 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦) ∈ ℂ → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3129, 30syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝑥𝑦))) ≤ (abs‘(𝑥𝑦)))
3228, 31eqbrtrrd 4677 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ≤ (abs‘(𝑥𝑦)))
3325abscld 14175 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝑥)) ∈ ℝ)
3429abscld 14175 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (abs‘(𝑥𝑦)) ∈ ℝ)
3533, 34lenltd 10183 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝑥)) ≤ (abs‘(𝑥𝑦)) ↔ ¬ (abs‘(𝑥𝑦)) < (abs‘(ℑ‘𝑥))))
3632, 35mpbid 222 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (abs‘(𝑥𝑦)) < (abs‘(ℑ‘𝑥)))
37 eqid 2622 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) = (abs ∘ − )
3837cnmetdval 22574 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
3918, 20, 38syl2anc 693 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
4039breq1d 4663 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) ↔ (abs‘(𝑥𝑦)) < (abs‘(ℑ‘𝑥))))
4136, 40mtbird 315 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℝ) → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))
4241ex 450 . . . . . . . . . . . 12 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ ℝ → ¬ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))))
4342con2d 129 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4443adantr 481 . . . . . . . . . 10 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)) → ¬ 𝑦 ∈ ℝ))
4544impr 649 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → ¬ 𝑦 ∈ ℝ)
4617, 45eldifd 3585 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ ℝ) ∧ (𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥)))) → 𝑦 ∈ (ℂ ∖ ℝ))
4746ex 450 . . . . . . 7 (𝑥 ∈ (ℂ ∖ ℝ) → ((𝑦 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑦) < (abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4816, 47sylbid 230 . . . . . 6 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) → 𝑦 ∈ (ℂ ∖ ℝ)))
4948ssrdv 3609 . . . . 5 (𝑥 ∈ (ℂ ∖ ℝ) → (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ))
50 oveq2 6658 . . . . . . 7 (𝑦 = (abs‘(ℑ‘𝑥)) → (𝑥(ball‘(abs ∘ − ))𝑦) = (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))))
5150sseq1d 3632 . . . . . 6 (𝑦 = (abs‘(ℑ‘𝑥)) → ((𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ) ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)))
5251rspcev 3309 . . . . 5 (((abs‘(ℑ‘𝑥)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(ℑ‘𝑥))) ⊆ (ℂ ∖ ℝ)) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5310, 49, 52syl2anc 693 . . . 4 (𝑥 ∈ (ℂ ∖ ℝ) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))
5453rgen 2922 . . 3 𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)
55 recld2.1 . . . . . 6 𝐽 = (TopOpen‘ℂfld)
5655cnfldtopn 22585 . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
5756elmopn2 22250 . . . 4 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ))))
5811, 57ax-mp 5 . . 3 ((ℂ ∖ ℝ) ∈ 𝐽 ↔ ((ℂ ∖ ℝ) ⊆ ℂ ∧ ∀𝑥 ∈ (ℂ ∖ ℝ)∃𝑦 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑦) ⊆ (ℂ ∖ ℝ)))
591, 54, 58mpbir2an 955 . 2 (ℂ ∖ ℝ) ∈ 𝐽
6055cnfldtop 22587 . . 3 𝐽 ∈ Top
61 ax-resscn 9993 . . 3 ℝ ⊆ ℂ
6256mopnuni 22246 . . . . 5 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ℂ = 𝐽)
6311, 62ax-mp 5 . . . 4 ℂ = 𝐽
6463iscld2 20832 . . 3 ((𝐽 ∈ Top ∧ ℝ ⊆ ℂ) → (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽))
6560, 61, 64mp2an 708 . 2 (ℝ ∈ (Clsd‘𝐽) ↔ (ℂ ∖ ℝ) ∈ 𝐽)
6659, 65mpbir 221 1 ℝ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  wss 3574   cuni 4436   class class class wbr 4653  ccom 5118  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  *cxr 10073   < clt 10074  cle 10075  cmin 10266  +crp 11832  cim 13838  abscabs 13974  TopOpenctopn 16082  ∞Metcxmt 19731  ballcbl 19733  fldccnfld 19746  Topctop 20698  Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-xms 22125  df-ms 22126
This theorem is referenced by:  zcld2  22618  rellycmp  22756  recmet  23120  ishl2  23166  recms  23168  logdmopn  24395  dvasin  33496  dvacos  33497  dvreasin  33498  dvreacos  33499
  Copyright terms: Public domain W3C validator