MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmpladd Structured version   Visualization version   GIF version

Theorem ressmpladd 19457
Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmpl.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressmpladd ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))

Proof of Theorem ressmpladd
StepHypRef Expression
1 ressmpl.u . . . . . 6 𝑈 = (𝐼 mPoly 𝐻)
2 eqid 2622 . . . . . 6 (𝐼 mPwSer 𝐻) = (𝐼 mPwSer 𝐻)
3 ressmpl.b . . . . . 6 𝐵 = (Base‘𝑈)
4 eqid 2622 . . . . . 6 (Base‘(𝐼 mPwSer 𝐻)) = (Base‘(𝐼 mPwSer 𝐻))
51, 2, 3, 4mplbasss 19432 . . . . 5 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝐻))
65sseli 3599 . . . 4 (𝑋𝐵𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)))
75sseli 3599 . . . 4 (𝑌𝐵𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))
86, 7anim12i 590 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻))))
9 eqid 2622 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
10 ressmpl.h . . . 4 𝐻 = (𝑅s 𝑇)
11 eqid 2622 . . . 4 ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))) = ((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))
12 ressmpl.2 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
139, 10, 2, 4, 11, 12resspsradd 19416 . . 3 ((𝜑 ∧ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝐻)) ∧ 𝑌 ∈ (Base‘(𝐼 mPwSer 𝐻)))) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
148, 13sylan2 491 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌))
15 fvex 6201 . . . . 5 (Base‘𝑈) ∈ V
163, 15eqeltri 2697 . . . 4 𝐵 ∈ V
171, 2, 3mplval2 19431 . . . . 5 𝑈 = ((𝐼 mPwSer 𝐻) ↾s 𝐵)
18 eqid 2622 . . . . 5 (+g‘(𝐼 mPwSer 𝐻)) = (+g‘(𝐼 mPwSer 𝐻))
1917, 18ressplusg 15993 . . . 4 (𝐵 ∈ V → (+g‘(𝐼 mPwSer 𝐻)) = (+g𝑈))
2016, 19ax-mp 5 . . 3 (+g‘(𝐼 mPwSer 𝐻)) = (+g𝑈)
2120oveqi 6663 . 2 (𝑋(+g‘(𝐼 mPwSer 𝐻))𝑌) = (𝑋(+g𝑈)𝑌)
22 fvex 6201 . . . . 5 (Base‘𝑆) ∈ V
23 ressmpl.s . . . . . . 7 𝑆 = (𝐼 mPoly 𝑅)
24 eqid 2622 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2523, 9, 24mplval2 19431 . . . . . 6 𝑆 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑆))
26 eqid 2622 . . . . . 6 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅))
2725, 26ressplusg 15993 . . . . 5 ((Base‘𝑆) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑆))
2822, 27ax-mp 5 . . . 4 (+g‘(𝐼 mPwSer 𝑅)) = (+g𝑆)
29 fvex 6201 . . . . 5 (Base‘(𝐼 mPwSer 𝐻)) ∈ V
3011, 26ressplusg 15993 . . . . 5 ((Base‘(𝐼 mPwSer 𝐻)) ∈ V → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))))
3129, 30ax-mp 5 . . . 4 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))
32 ressmpl.p . . . . . 6 𝑃 = (𝑆s 𝐵)
33 eqid 2622 . . . . . 6 (+g𝑆) = (+g𝑆)
3432, 33ressplusg 15993 . . . . 5 (𝐵 ∈ V → (+g𝑆) = (+g𝑃))
3516, 34ax-mp 5 . . . 4 (+g𝑆) = (+g𝑃)
3628, 31, 353eqtr3i 2652 . . 3 (+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻)))) = (+g𝑃)
3736oveqi 6663 . 2 (𝑋(+g‘((𝐼 mPwSer 𝑅) ↾s (Base‘(𝐼 mPwSer 𝐻))))𝑌) = (𝑋(+g𝑃)𝑌)
3814, 21, 373eqtr3g 2679 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  +gcplusg 15941  SubRingcsubrg 18776   mPwSer cmps 19351   mPoly cmpl 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-subg 17591  df-ring 18549  df-subrg 18778  df-psr 19356  df-mpl 19358
This theorem is referenced by:  ressply1add  19600
  Copyright terms: Public domain W3C validator