MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuss Structured version   Visualization version   Unicode version

Theorem ressuss 22067
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
ressuss  |-  ( A  e.  V  ->  (UnifSt `  ( Ws  A ) )  =  ( (UnifSt `  W
)t  ( A  X.  A
) ) )

Proof of Theorem ressuss
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2622 . . . . 5  |-  ( UnifSet `  W )  =  (
UnifSet `  W )
31, 2ussval 22063 . . . 4  |-  ( (
UnifSet `  W )t  ( (
Base `  W )  X.  ( Base `  W
) ) )  =  (UnifSt `  W )
43oveq1i 6660 . . 3  |-  ( ( ( UnifSet `  W )t  (
( Base `  W )  X.  ( Base `  W
) ) )t  ( A  X.  A ) )  =  ( (UnifSt `  W )t  ( A  X.  A ) )
5 fvex 6201 . . . . 5  |-  ( UnifSet `  W )  e.  _V
65a1i 11 . . . 4  |-  ( A  e.  V  ->  ( UnifSet
`  W )  e. 
_V )
7 fvex 6201 . . . . . 6  |-  ( Base `  W )  e.  _V
87, 7xpex 6962 . . . . 5  |-  ( (
Base `  W )  X.  ( Base `  W
) )  e.  _V
98a1i 11 . . . 4  |-  ( A  e.  V  ->  (
( Base `  W )  X.  ( Base `  W
) )  e.  _V )
10 sqxpexg 6963 . . . 4  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
11 restco 20968 . . . 4  |-  ( ( ( UnifSet `  W )  e.  _V  /\  ( (
Base `  W )  X.  ( Base `  W
) )  e.  _V  /\  ( A  X.  A
)  e.  _V )  ->  ( ( ( UnifSet `  W )t  ( ( Base `  W )  X.  ( Base `  W ) ) )t  ( A  X.  A
) )  =  ( ( UnifSet `  W )t  (
( ( Base `  W
)  X.  ( Base `  W ) )  i^i  ( A  X.  A
) ) ) )
126, 9, 10, 11syl3anc 1326 . . 3  |-  ( A  e.  V  ->  (
( ( UnifSet `  W
)t  ( ( Base `  W
)  X.  ( Base `  W ) ) )t  ( A  X.  A ) )  =  ( (
UnifSet `  W )t  ( ( ( Base `  W
)  X.  ( Base `  W ) )  i^i  ( A  X.  A
) ) ) )
134, 12syl5eqr 2670 . 2  |-  ( A  e.  V  ->  (
(UnifSt `  W )t  ( A  X.  A ) )  =  ( ( UnifSet `  W )t  ( ( (
Base `  W )  X.  ( Base `  W
) )  i^i  ( A  X.  A ) ) ) )
14 inxp 5254 . . . . 5  |-  ( ( ( Base `  W
)  X.  ( Base `  W ) )  i^i  ( A  X.  A
) )  =  ( ( ( Base `  W
)  i^i  A )  X.  ( ( Base `  W
)  i^i  A )
)
15 incom 3805 . . . . . . 7  |-  ( A  i^i  ( Base `  W
) )  =  ( ( Base `  W
)  i^i  A )
16 eqid 2622 . . . . . . . 8  |-  ( Ws  A )  =  ( Ws  A )
1716, 1ressbas 15930 . . . . . . 7  |-  ( A  e.  V  ->  ( A  i^i  ( Base `  W
) )  =  (
Base `  ( Ws  A
) ) )
1815, 17syl5eqr 2670 . . . . . 6  |-  ( A  e.  V  ->  (
( Base `  W )  i^i  A )  =  (
Base `  ( Ws  A
) ) )
1918sqxpeqd 5141 . . . . 5  |-  ( A  e.  V  ->  (
( ( Base `  W
)  i^i  A )  X.  ( ( Base `  W
)  i^i  A )
)  =  ( (
Base `  ( Ws  A
) )  X.  ( Base `  ( Ws  A ) ) ) )
2014, 19syl5eq 2668 . . . 4  |-  ( A  e.  V  ->  (
( ( Base `  W
)  X.  ( Base `  W ) )  i^i  ( A  X.  A
) )  =  ( ( Base `  ( Ws  A ) )  X.  ( Base `  ( Ws  A ) ) ) )
2120oveq2d 6666 . . 3  |-  ( A  e.  V  ->  (
( UnifSet `  W )t  (
( ( Base `  W
)  X.  ( Base `  W ) )  i^i  ( A  X.  A
) ) )  =  ( ( UnifSet `  W
)t  ( ( Base `  ( Ws  A ) )  X.  ( Base `  ( Ws  A ) ) ) ) )
2216, 2ressunif 22066 . . . 4  |-  ( A  e.  V  ->  ( UnifSet
`  W )  =  ( UnifSet `  ( Ws  A
) ) )
2322oveq1d 6665 . . 3  |-  ( A  e.  V  ->  (
( UnifSet `  W )t  (
( Base `  ( Ws  A
) )  X.  ( Base `  ( Ws  A ) ) ) )  =  ( ( UnifSet `  ( Ws  A ) )t  ( (
Base `  ( Ws  A
) )  X.  ( Base `  ( Ws  A ) ) ) ) )
24 eqid 2622 . . . . 5  |-  ( Base `  ( Ws  A ) )  =  ( Base `  ( Ws  A ) )
25 eqid 2622 . . . . 5  |-  ( UnifSet `  ( Ws  A ) )  =  ( UnifSet `  ( Ws  A
) )
2624, 25ussval 22063 . . . 4  |-  ( (
UnifSet `  ( Ws  A ) )t  ( ( Base `  ( Ws  A ) )  X.  ( Base `  ( Ws  A ) ) ) )  =  (UnifSt `  ( Ws  A ) )
2726a1i 11 . . 3  |-  ( A  e.  V  ->  (
( UnifSet `  ( Ws  A
) )t  ( ( Base `  ( Ws  A ) )  X.  ( Base `  ( Ws  A ) ) ) )  =  (UnifSt `  ( Ws  A ) ) )
2821, 23, 273eqtrd 2660 . 2  |-  ( A  e.  V  ->  (
( UnifSet `  W )t  (
( ( Base `  W
)  X.  ( Base `  W ) )  i^i  ( A  X.  A
) ) )  =  (UnifSt `  ( Ws  A
) ) )
2913, 28eqtr2d 2657 1  |-  ( A  e.  V  ->  (UnifSt `  ( Ws  A ) )  =  ( (UnifSt `  W
)t  ( A  X.  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    X. cxp 5112   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   UnifSetcunif 15951   ↾t crest 16081  UnifStcuss 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-unif 15965  df-rest 16083  df-uss 22060
This theorem is referenced by:  ressust  22068  ressusp  22069  ucnextcn  22108  reust  23169  qqhucn  30036
  Copyright terms: Public domain W3C validator