Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem62 Structured version   Visualization version   GIF version

Theorem fourierdlem62 40385
Description: The function 𝐾 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem62.k 𝐾 = (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2))))))
Assertion
Ref Expression
fourierdlem62 𝐾 ∈ ((-π[,]π)–cn→ℝ)

Proof of Theorem fourierdlem62
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem62.k . . . 4 𝐾 = (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2))))))
2 eqeq1 2626 . . . . . 6 (𝑦 = 𝑠 → (𝑦 = 0 ↔ 𝑠 = 0))
3 id 22 . . . . . . 7 (𝑦 = 𝑠𝑦 = 𝑠)
4 oveq1 6657 . . . . . . . . 9 (𝑦 = 𝑠 → (𝑦 / 2) = (𝑠 / 2))
54fveq2d 6195 . . . . . . . 8 (𝑦 = 𝑠 → (sin‘(𝑦 / 2)) = (sin‘(𝑠 / 2)))
65oveq2d 6666 . . . . . . 7 (𝑦 = 𝑠 → (2 · (sin‘(𝑦 / 2))) = (2 · (sin‘(𝑠 / 2))))
73, 6oveq12d 6668 . . . . . 6 (𝑦 = 𝑠 → (𝑦 / (2 · (sin‘(𝑦 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
82, 7ifbieq2d 4111 . . . . 5 (𝑦 = 𝑠 → if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
98cbvmptv 4750 . . . 4 (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
101, 9eqtri 2644 . . 3 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
1110fourierdlem43 40367 . 2 𝐾:(-π[,]π)⟶ℝ
12 ax-resscn 9993 . . 3 ℝ ⊆ ℂ
13 fss 6056 . . . . . 6 ((𝐾:(-π[,]π)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐾:(-π[,]π)⟶ℂ)
1411, 12, 13mp2an 708 . . . . 5 𝐾:(-π[,]π)⟶ℂ
1514a1i 11 . . . . . . . . 9 (𝑠 = 0 → 𝐾:(-π[,]π)⟶ℂ)
16 difss 3737 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ {0}) ⊆ (-π(,)π)
17 elioore 12205 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π(,)π) → 𝑠 ∈ ℝ)
1817ssriv 3607 . . . . . . . . . . . . . . . . 17 (-π(,)π) ⊆ ℝ
1916, 18sstri 3612 . . . . . . . . . . . . . . . 16 ((-π(,)π) ∖ {0}) ⊆ ℝ
2019a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ((-π(,)π) ∖ {0}) ⊆ ℝ)
21 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)
2219sseli 3599 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) → 𝑥 ∈ ℝ)
2321, 22fmpti 6383 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥):((-π(,)π) ∖ {0})⟶ℝ
2423a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥):((-π(,)π) ∖ {0})⟶ℝ)
25 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))
26 2re 11090 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
2726a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ)
2822rehalfcld 11279 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) → (𝑥 / 2) ∈ ℝ)
2928resincld 14873 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑥 / 2)) ∈ ℝ)
3027, 29remulcld 10070 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑥 / 2))) ∈ ℝ)
3125, 30fmpti 6383 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))):((-π(,)π) ∖ {0})⟶ℝ
3231a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))):((-π(,)π) ∖ {0})⟶ℝ)
33 iooretop 22569 . . . . . . . . . . . . . . . 16 (-π(,)π) ∈ (topGen‘ran (,))
3433a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (-π(,)π) ∈ (topGen‘ran (,)))
35 0re 10040 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
36 negpilt0 39492 . . . . . . . . . . . . . . . . 17 -π < 0
37 pipos 24212 . . . . . . . . . . . . . . . . 17 0 < π
38 pire 24210 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ
3938renegcli 10342 . . . . . . . . . . . . . . . . . . 19 -π ∈ ℝ
4039rexri 10097 . . . . . . . . . . . . . . . . . 18 -π ∈ ℝ*
4138rexri 10097 . . . . . . . . . . . . . . . . . 18 π ∈ ℝ*
42 elioo2 12216 . . . . . . . . . . . . . . . . . 18 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → (0 ∈ (-π(,)π) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 < π)))
4340, 41, 42mp2an 708 . . . . . . . . . . . . . . . . 17 (0 ∈ (-π(,)π) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 < π))
4435, 36, 37, 43mpbir3an 1244 . . . . . . . . . . . . . . . 16 0 ∈ (-π(,)π)
4544a1i 11 . . . . . . . . . . . . . . 15 (⊤ → 0 ∈ (-π(,)π))
46 eqid 2622 . . . . . . . . . . . . . . 15 ((-π(,)π) ∖ {0}) = ((-π(,)π) ∖ {0})
47 1ex 10035 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
48 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)
4947, 48dmmpti 6023 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = ((-π(,)π) ∖ {0})
50 reelprrecn 10028 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ∈ {ℝ, ℂ}
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ℝ ∈ {ℝ, ℂ})
5212sseli 3599 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5352adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
54 1red 10055 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
5551dvmptid 23720 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
56 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5756tgioo2 22606 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
58 sncldre 39208 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℝ → {0} ∈ (Clsd‘(topGen‘ran (,))))
5935, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 {0} ∈ (Clsd‘(topGen‘ran (,)))
60 retopon 22567 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
6160toponunii 20721 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ = (topGen‘ran (,))
6261difopn 20838 . . . . . . . . . . . . . . . . . . . . . . . 24 (((-π(,)π) ∈ (topGen‘ran (,)) ∧ {0} ∈ (Clsd‘(topGen‘ran (,)))) → ((-π(,)π) ∖ {0}) ∈ (topGen‘ran (,)))
6333, 59, 62mp2an 708 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π(,)π) ∖ {0}) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ((-π(,)π) ∖ {0}) ∈ (topGen‘ran (,)))
6551, 53, 54, 55, 20, 57, 56, 64dvmptres 23726 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1))
6665trud 1493 . . . . . . . . . . . . . . . . . . . 20 (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)
6766eqcomi 2631 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
6867dmeqi 5325 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
6949, 68eqtr3i 2646 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ {0}) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
7069eqimssi 3659 . . . . . . . . . . . . . . . 16 ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
7170a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)))
72 fvex 6201 . . . . . . . . . . . . . . . . . . 19 (cos‘(𝑥 / 2)) ∈ V
73 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))
7472, 73dmmpti 6023 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = ((-π(,)π) ∖ {0})
75 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑥 ∈ ℝ) → 2 ∈ ℂ)
7653halfcld 11277 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑥 / 2) ∈ ℂ)
7776sincld 14860 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘(𝑥 / 2)) ∈ ℂ)
7875, 77mulcld 10060 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → (2 · (sin‘(𝑥 / 2))) ∈ ℂ)
7976coscld 14861 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘(𝑥 / 2)) ∈ ℂ)
80 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → 2 ∈ ℂ)
81 2ne0 11113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 ≠ 0
8281a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → 2 ≠ 0)
8352, 80, 82divrec2d 10805 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → (𝑥 / 2) = ((1 / 2) · 𝑥))
8483fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℝ → (sin‘(𝑥 / 2)) = (sin‘((1 / 2) · 𝑥)))
8584oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘((1 / 2) · 𝑥))))
8685mpteq2ia 4740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))
8786oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2))))) = (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))
88 resmpt 5449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))
8912, 88ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))
9089eqcomi 2631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) = ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ)
9190oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (ℝ D ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ))
92 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) = (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))
93 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℂ → 2 ∈ ℂ)
94 halfcn 11247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1 / 2) ∈ ℂ
9594a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℂ → (1 / 2) ∈ ℂ)
96 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
9795, 96mulcld 10060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℂ → ((1 / 2) · 𝑥) ∈ ℂ)
9897sincld 14860 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℂ → (sin‘((1 / 2) · 𝑥)) ∈ ℂ)
9993, 98mulcld 10060 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑥))) ∈ ℂ)
10092, 99fmpti 6383 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))):ℂ⟶ℂ
101 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
102 2cn 11091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ∈ ℂ
103102, 94mulcli 10045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (2 · (1 / 2)) ∈ ℂ
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ℂ → (2 · (1 / 2)) ∈ ℂ)
10597coscld 14861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ℂ → (cos‘((1 / 2) · 𝑥)) ∈ ℂ)
106104, 105mulcld 10060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) ∈ ℂ)
107106adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((⊤ ∧ 𝑥 ∈ ℂ) → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) ∈ ℂ)
108101, 107dmmptd 6024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⊤ → dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = ℂ)
109108trud 1493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = ℂ
11012, 109sseqtr4i 3638 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℝ ⊆ dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
111 dvasinbx 40135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))))
112102, 94, 111mp2an 708 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
113112dmeqi 5325 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 dom (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
114110, 113sseqtr4i 3638 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ dom (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))
115 dvcnre 40130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))):ℂ⟶ℂ ∧ ℝ ⊆ dom (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))) → (ℝ D ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ)) = ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ))
116100, 114, 115mp2an 708 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℝ D ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ)) = ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ)
117112reseq1i 5392 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) ↾ ℝ)
118 resmpt 5449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))))
11912, 118ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
120102, 81recidi 10756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2 · (1 / 2)) = 1
121120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → (2 · (1 / 2)) = 1)
12283eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℝ → ((1 / 2) · 𝑥) = (𝑥 / 2))
123122fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → (cos‘((1 / 2) · 𝑥)) = (cos‘(𝑥 / 2)))
124121, 123oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) = (1 · (cos‘(𝑥 / 2))))
12552halfcld 11277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℂ)
126125coscld 14861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → (cos‘(𝑥 / 2)) ∈ ℂ)
127126mulid2d 10058 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → (1 · (cos‘(𝑥 / 2))) = (cos‘(𝑥 / 2)))
128124, 127eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℝ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) = (cos‘(𝑥 / 2)))
129128mpteq2ia 4740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
130117, 119, 1293eqtri 2648 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
13191, 116, 1303eqtri 2648 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
13287, 131eqtri 2644 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
133132a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2))))
13451, 78, 79, 133, 20, 57, 56, 64dvmptres 23726 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))))
135134trud 1493 . . . . . . . . . . . . . . . . . . . 20 (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))
136135eqcomi 2631 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
137136dmeqi 5325 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
13874, 137eqtr3i 2646 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ {0}) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
139138eqimssi 3659 . . . . . . . . . . . . . . . 16 ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
140139a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))))
14117recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π(,)π) → 𝑠 ∈ ℂ)
142141ssriv 3607 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)π) ⊆ ℂ
143142a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (-π(,)π) ⊆ ℂ)
144 ssid 3624 . . . . . . . . . . . . . . . . . . . . . . 23 ℂ ⊆ ℂ
145144a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ℂ ⊆ ℂ)
146143, 145idcncfg 40085 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ))
147146trud 1493 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ)
148 cnlimc 23652 . . . . . . . . . . . . . . . . . . . . 21 ((-π(,)π) ⊆ ℂ → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦))))
149142, 148ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦)))
150147, 149mpbi 220 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦))
151150simpri 478 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦)
152 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) = ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0))
153 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦) = ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0))
154152, 153eleq12d 2695 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦) ↔ ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0)))
155154rspccva 3308 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦) ∧ 0 ∈ (-π(,)π)) → ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0))
156151, 44, 155mp2an 708 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0)
157 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → 𝑥 = 0)
158 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (-π(,)π) ↦ 𝑥) = (𝑥 ∈ (-π(,)π) ↦ 𝑥)
159 c0ex 10034 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
160157, 158, 159fvmpt 6282 . . . . . . . . . . . . . . . . . 18 (0 ∈ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) = 0)
16144, 160ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) = 0
162 elioore 12205 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
163162recnd 10068 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℂ)
164158, 163fmpti 6383 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ
165164a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ)
166165limcdif 23640 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) lim 0))
167166trud 1493 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) lim 0)
168 resmpt 5449 . . . . . . . . . . . . . . . . . . . 20 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
16916, 168ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)
170169oveq1i 6660 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0)
171167, 170eqtri 2644 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0)
172156, 161, 1713eltr3i 2713 . . . . . . . . . . . . . . . 16 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0)
173172a1i 11 . . . . . . . . . . . . . . 15 (⊤ → 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0))
174 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ ↦ 2) = (𝑥 ∈ ℂ ↦ 2)
175144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℂ → ℂ ⊆ ℂ)
176 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℂ → 2 ∈ ℂ)
177175, 176, 175constcncfg 40084 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ → (𝑥 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
178102, 177mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑥 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
179 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑥 ∈ (-π(,)π)) → 2 ∈ ℂ)
180174, 178, 143, 145, 179cncfmptssg 40083 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑥 ∈ (-π(,)π) ↦ 2) ∈ ((-π(,)π)–cn→ℂ))
181 sincn 24198 . . . . . . . . . . . . . . . . . . . . . . . 24 sin ∈ (ℂ–cn→ℂ)
182181a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → sin ∈ (ℂ–cn→ℂ))
183 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℂ ↦ (𝑥 / 2)) = (𝑥 ∈ ℂ ↦ (𝑥 / 2))
184183divccncf 22709 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ (ℂ–cn→ℂ))
185102, 81, 184mp2an 708 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ (ℂ–cn→ℂ)
186185a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ (ℂ–cn→ℂ))
187163adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⊤ ∧ 𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
188187halfcld 11277 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑥 ∈ (-π(,)π)) → (𝑥 / 2) ∈ ℂ)
189183, 186, 143, 145, 188cncfmptssg 40083 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (𝑥 / 2)) ∈ ((-π(,)π)–cn→ℂ))
190182, 189cncfmpt1f 22716 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (sin‘(𝑥 / 2))) ∈ ((-π(,)π)–cn→ℂ))
191180, 190mulcncf 23215 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ))
192191trud 1493 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ)
193 cnlimc 23652 . . . . . . . . . . . . . . . . . . . . 21 ((-π(,)π) ⊆ ℂ → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦))))
194142, 193ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦)))
195192, 194mpbi 220 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦))
196195simpri 478 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦)
197 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0))
198 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦) = ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0))
199197, 198eleq12d 2695 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦) ↔ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)))
200199rspccva 3308 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦) ∧ 0 ∈ (-π(,)π)) → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0))
201196, 44, 200mp2an 708 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
202 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (𝑥 / 2) = (0 / 2))
203102, 81div0i 10759 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 / 2) = 0
204202, 203syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (𝑥 / 2) = 0)
205204fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 0 → (sin‘(𝑥 / 2)) = (sin‘0))
206 sin0 14879 . . . . . . . . . . . . . . . . . . . . . 22 (sin‘0) = 0
207205, 206syl6eq 2672 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (sin‘(𝑥 / 2)) = 0)
208207oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (2 · (sin‘(𝑥 / 2))) = (2 · 0))
209 2t0e0 11183 . . . . . . . . . . . . . . . . . . . 20 (2 · 0) = 0
210208, 209syl6eq 2672 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (2 · (sin‘(𝑥 / 2))) = 0)
211 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))
212210, 211, 159fvmpt 6282 . . . . . . . . . . . . . . . . . 18 (0 ∈ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) = 0)
21344, 212ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) = 0
214 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π(,)π) → 2 ∈ ℂ)
215163halfcld 11277 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (-π(,)π) → (𝑥 / 2) ∈ ℂ)
216215sincld 14860 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π(,)π) → (sin‘(𝑥 / 2)) ∈ ℂ)
217214, 216mulcld 10060 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-π(,)π) → (2 · (sin‘(𝑥 / 2))) ∈ ℂ)
218211, 217fmpti 6383 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ
219218a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ)
220219limcdif 23640 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) lim 0))
221220trud 1493 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) lim 0)
222 resmpt 5449 . . . . . . . . . . . . . . . . . . . 20 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
22316, 222ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))
224223oveq1i 6660 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
225221, 224eqtri 2644 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
226201, 213, 2253eltr3i 2713 . . . . . . . . . . . . . . . 16 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
227226a1i 11 . . . . . . . . . . . . . . 15 (⊤ → 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0))
228 eqidd 2623 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
229 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑥 / 2) = (𝑦 / 2))
230229fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (sin‘(𝑥 / 2)) = (sin‘(𝑦 / 2)))
231230oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘(𝑦 / 2))))
232231adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑦) → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘(𝑦 / 2))))
233 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ ((-π(,)π) ∖ {0}))
23426a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ)
23519sseli 3599 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ ℝ)
236235rehalfcld 11279 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) ∈ ℝ)
237236resincld 14873 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑦 / 2)) ∈ ℝ)
238234, 237remulcld 10070 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑦 / 2))) ∈ ℝ)
239228, 232, 233, 238fvmptd 6288 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = (2 · (sin‘(𝑦 / 2))))
240 2cnd 11093 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℂ)
241237recnd 10068 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑦 / 2)) ∈ ℂ)
24281a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ≠ 0)
243 ioossicc 12259 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)π) ⊆ (-π[,]π)
244 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ (-π(,)π))
245243, 244sseldi 3601 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ (-π[,]π))
246 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ≠ 0)
247 fourierdlem44 40368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (-π[,]π) ∧ 𝑦 ≠ 0) → (sin‘(𝑦 / 2)) ≠ 0)
248245, 246, 247syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑦 / 2)) ≠ 0)
249240, 241, 242, 248mulne0d 10679 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑦 / 2))) ≠ 0)
250239, 249eqnetrd 2861 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ≠ 0)
251250neneqd 2799 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ¬ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0)
252251nrex 3000 . . . . . . . . . . . . . . . . 17 ¬ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0
25325fnmpt 6020 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ ((-π(,)π) ∖ {0})(2 · (sin‘(𝑥 / 2))) ∈ ℝ → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) Fn ((-π(,)π) ∖ {0}))
254253, 30mprg 2926 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) Fn ((-π(,)π) ∖ {0})
255 ssid 3624 . . . . . . . . . . . . . . . . . 18 ((-π(,)π) ∖ {0}) ⊆ ((-π(,)π) ∖ {0})
256 fvelimab 6253 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) Fn ((-π(,)π) ∖ {0}) ∧ ((-π(,)π) ∖ {0}) ⊆ ((-π(,)π) ∖ {0})) → (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0))
257254, 255, 256mp2an 708 . . . . . . . . . . . . . . . . 17 (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0)
258252, 257mtbir 313 . . . . . . . . . . . . . . . 16 ¬ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0}))
259258a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ¬ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0})))
260 eqidd 2623 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))))
261229fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (cos‘(𝑥 / 2)) = (cos‘(𝑦 / 2)))
262261adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑦) → (cos‘(𝑥 / 2)) = (cos‘(𝑦 / 2)))
263235recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ ℂ)
264263halfcld 11277 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) ∈ ℂ)
265264coscld 14861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑦 / 2)) ∈ ℂ)
266260, 262, 233, 265fvmptd 6288 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = (cos‘(𝑦 / 2)))
267236rered 13964 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑦 / 2)) = (𝑦 / 2))
268 halfpire 24216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π / 2) ∈ ℝ
269268renegcli 10342 . . . . . . . . . . . . . . . . . . . . . . . . . 26 -(π / 2) ∈ ℝ
270269a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ)
271270rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ*)
272268a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ)
273272rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ*)
274 picn 24211 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℂ
275 divneg 10719 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
276274, 102, 81, 275mp3an 1424 . . . . . . . . . . . . . . . . . . . . . . . . 25 -(π / 2) = (-π / 2)
27739a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ)
278 2rp 11837 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
279278a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ+)
28040a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ*)
28141a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ*)
282 ioogtlb 39717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑦 ∈ (-π(,)π)) → -π < 𝑦)
283280, 281, 244, 282syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -π < 𝑦)
284277, 235, 279, 283ltdiv1dd 11929 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (-π / 2) < (𝑦 / 2))
285276, 284syl5eqbr 4688 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) < (𝑦 / 2))
28638a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ)
287 iooltub 39735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑦 ∈ (-π(,)π)) → 𝑦 < π)
288280, 281, 244, 287syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 < π)
289235, 286, 279, 288ltdiv1dd 11929 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) < (π / 2))
290271, 273, 236, 285, 289eliood 39720 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) ∈ (-(π / 2)(,)(π / 2)))
291267, 290eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑦 / 2)) ∈ (-(π / 2)(,)(π / 2)))
292 cosne0 24276 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 / 2) ∈ ℂ ∧ (ℜ‘(𝑦 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝑦 / 2)) ≠ 0)
293264, 291, 292syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑦 / 2)) ≠ 0)
294266, 293eqnetrd 2861 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) ≠ 0)
295294neneqd 2799 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ¬ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0)
296295nrex 3000 . . . . . . . . . . . . . . . . . 18 ¬ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0
29772, 73fnmpti 6022 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) Fn ((-π(,)π) ∖ {0})
298 fvelimab 6253 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) Fn ((-π(,)π) ∖ {0}) ∧ ((-π(,)π) ∖ {0}) ⊆ ((-π(,)π) ∖ {0})) → (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0))
299297, 255, 298mp2an 708 . . . . . . . . . . . . . . . . . 18 (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0)
300296, 299mtbir 313 . . . . . . . . . . . . . . . . 17 ¬ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0}))
301135imaeq1i 5463 . . . . . . . . . . . . . . . . . 18 ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0})) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0}))
302301eleq2i 2693 . . . . . . . . . . . . . . . . 17 (0 ∈ ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0})) ↔ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0})))
303300, 302mtbir 313 . . . . . . . . . . . . . . . 16 ¬ 0 ∈ ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0}))
304303a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ¬ 0 ∈ ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0})))
305 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑠 / 2))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑠 / 2)))
306 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2))))
30719sseli 3599 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ ℝ)
308307recnd 10068 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ ℂ)
309308halfcld 11277 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) ∈ ℂ)
310309coscld 14861 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ∈ ℂ)
311307rehalfcld 11279 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) ∈ ℝ)
312311rered 13964 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑠 / 2)) = (𝑠 / 2))
313269a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ)
314313rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ*)
315268a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ)
316315rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ*)
31738a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ)
318317renegcld 10457 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ)
319278a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ+)
32040a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ*)
32141a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ*)
322 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ (-π(,)π))
323 ioogtlb 39717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π(,)π)) → -π < 𝑠)
324320, 321, 322, 323syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -π < 𝑠)
325318, 307, 319, 324ltdiv1dd 11929 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (-π / 2) < (𝑠 / 2))
326276, 325syl5eqbr 4688 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) < (𝑠 / 2))
327 iooltub 39735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π(,)π)) → 𝑠 < π)
328320, 321, 322, 327syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 < π)
329307, 317, 319, 328ltdiv1dd 11929 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) < (π / 2))
330314, 316, 311, 326, 329eliood 39720 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) ∈ (-(π / 2)(,)(π / 2)))
331312, 330eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑠 / 2)) ∈ (-(π / 2)(,)(π / 2)))
332 cosne0 24276 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑠 / 2) ∈ ℂ ∧ (ℜ‘(𝑠 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝑠 / 2)) ≠ 0)
333309, 331, 332syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ≠ 0)
334333neneqd 2799 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ (cos‘(𝑠 / 2)) = 0)
335311recoscld 14874 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ∈ ℝ)
336 elsng 4191 . . . . . . . . . . . . . . . . . . . . 21 ((cos‘(𝑠 / 2)) ∈ ℝ → ((cos‘(𝑠 / 2)) ∈ {0} ↔ (cos‘(𝑠 / 2)) = 0))
337335, 336syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((cos‘(𝑠 / 2)) ∈ {0} ↔ (cos‘(𝑠 / 2)) = 0))
338334, 337mtbird 315 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ (cos‘(𝑠 / 2)) ∈ {0})
339310, 338eldifd 3585 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
340339adantl 482 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑠 ∈ ((-π(,)π) ∖ {0})) → (cos‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
341309ad2antrl 764 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ (𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ (𝑠 / 2) ≠ 0)) → (𝑠 / 2) ∈ ℂ)
342 cosf 14855 . . . . . . . . . . . . . . . . . . . 20 cos:ℂ⟶ℂ
343342a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → cos:ℂ⟶ℂ)
344343ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
345 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ ↦ (𝑠 / 2)) = (𝑠 ∈ ℂ ↦ (𝑠 / 2))
346345divccncf 22709 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑠 ∈ ℂ ↦ (𝑠 / 2)) ∈ (ℂ–cn→ℂ))
347102, 81, 346mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ ↦ (𝑠 / 2)) ∈ (ℂ–cn→ℂ)
348347a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑠 ∈ ℂ ↦ (𝑠 / 2)) ∈ (ℂ–cn→ℂ))
349141adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑠 ∈ (-π(,)π)) → 𝑠 ∈ ℂ)
350349halfcld 11277 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑠 ∈ (-π(,)π)) → (𝑠 / 2) ∈ ℂ)
351345, 348, 143, 145, 350cncfmptssg 40083 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ∈ ((-π(,)π)–cn→ℂ))
352 oveq1 6657 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
353352, 203syl6eq 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 0 → (𝑠 / 2) = 0)
354351, 45, 353cnmptlimc 23654 . . . . . . . . . . . . . . . . . . 19 (⊤ → 0 ∈ ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0))
355 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) = (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2))
356141halfcld 11277 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π(,)π) → (𝑠 / 2) ∈ ℂ)
357355, 356fmpti 6383 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)):(-π(,)π)⟶ℂ
358357a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)):(-π(,)π)⟶ℂ)
359358limcdif 23640 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) lim 0))
360359trud 1493 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) lim 0)
361 resmpt 5449 . . . . . . . . . . . . . . . . . . . . . 22 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)))
36216, 361ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2))
363362oveq1i 6660 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)) lim 0)
364360, 363eqtri 2644 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)) lim 0)
365354, 364syl6eleq 2711 . . . . . . . . . . . . . . . . . 18 (⊤ → 0 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)) lim 0))
366 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . 23 (cos:ℂ⟶ℂ → cos Fn ℂ)
367342, 366ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 cos Fn ℂ
368 dffn5 6241 . . . . . . . . . . . . . . . . . . . . . 22 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
369367, 368mpbi 220 . . . . . . . . . . . . . . . . . . . . 21 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
370 coscn 24199 . . . . . . . . . . . . . . . . . . . . 21 cos ∈ (ℂ–cn→ℂ)
371369, 370eqeltrri 2698 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ)
372371a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ))
373 0cnd 10033 . . . . . . . . . . . . . . . . . . 19 (⊤ → 0 ∈ ℂ)
374 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (cos‘𝑥) = (cos‘0))
375 cos0 14880 . . . . . . . . . . . . . . . . . . . 20 (cos‘0) = 1
376374, 375syl6eq 2672 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (cos‘𝑥) = 1)
377372, 373, 376cnmptlimc 23654 . . . . . . . . . . . . . . . . . 18 (⊤ → 1 ∈ ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) lim 0))
378 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑠 / 2) → (cos‘𝑥) = (cos‘(𝑠 / 2)))
379 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 / 2) = 0 → (cos‘(𝑠 / 2)) = (cos‘0))
380379, 375syl6eq 2672 . . . . . . . . . . . . . . . . . . 19 ((𝑠 / 2) = 0 → (cos‘(𝑠 / 2)) = 1)
381380ad2antll 765 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ (𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ (𝑠 / 2) = 0)) → (cos‘(𝑠 / 2)) = 1)
382341, 344, 365, 377, 378, 381limcco 23657 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑠 / 2))) lim 0))
383 ax-1ne0 10005 . . . . . . . . . . . . . . . . . 18 1 ≠ 0
384383a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ≠ 0)
385305, 306, 340, 382, 384reclimc 39885 . . . . . . . . . . . . . . . 16 (⊤ → (1 / 1) ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) lim 0))
386 1div1e1 10717 . . . . . . . . . . . . . . . 16 (1 / 1) = 1
38766fveq1i 6192 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)‘𝑠)
388 eqidd 2623 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1))
389 eqidd 2623 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → 1 = 1)
390 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ ((-π(,)π) ∖ {0}))
391 1red 10055 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 1 ∈ ℝ)
392388, 389, 390, 391fvmptd 6288 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)‘𝑠) = 1)
393387, 392syl5req 2669 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 1 = ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠))
394135a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))))
395 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑠 → (𝑥 / 2) = (𝑠 / 2))
396395fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑠 → (cos‘(𝑥 / 2)) = (cos‘(𝑠 / 2)))
397396adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (cos‘(𝑥 / 2)) = (cos‘(𝑠 / 2)))
398394, 397, 390, 335fvmptd 6288 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠) = (cos‘(𝑠 / 2)))
399398eqcomd 2628 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) = ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠))
400393, 399oveq12d 6668 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (1 / (cos‘(𝑠 / 2))) = (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠)))
401400mpteq2ia 4740 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠)))
402401oveq1i 6660 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠))) lim 0)
403385, 386, 4023eltr3g 2717 . . . . . . . . . . . . . . 15 (⊤ → 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠))) lim 0))
40420, 24, 32, 34, 45, 46, 71, 140, 173, 227, 259, 304, 403lhop 23779 . . . . . . . . . . . . . 14 (⊤ → 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) lim 0))
405404trud 1493 . . . . . . . . . . . . 13 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) lim 0)
406 eqidd 2623 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
407 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → 𝑥 = 𝑠)
408406, 407, 390, 307fvmptd 6288 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) = 𝑠)
409 eqidd 2623 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
410407oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (𝑥 / 2) = (𝑠 / 2))
411410fveq2d 6195 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (sin‘(𝑥 / 2)) = (sin‘(𝑠 / 2)))
412411oveq2d 6666 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘(𝑠 / 2))))
41326a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ)
414311resincld 14873 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑠 / 2)) ∈ ℝ)
415413, 414remulcld 10070 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
416409, 412, 390, 415fvmptd 6288 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠) = (2 · (sin‘(𝑠 / 2))))
417408, 416oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠)) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
418417mpteq2ia 4740 . . . . . . . . . . . . . 14 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
419418oveq1i 6660 . . . . . . . . . . . . 13 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0)
420405, 419eleqtri 2699 . . . . . . . . . . . 12 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0)
42110oveq1i 6660 . . . . . . . . . . . . . 14 (𝐾 lim 0) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
42210feq1i 6036 . . . . . . . . . . . . . . . . . . 19 (𝐾:(-π[,]π)⟶ℂ ↔ (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π[,]π)⟶ℂ)
42314, 422mpbi 220 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π[,]π)⟶ℂ
424423a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π[,]π)⟶ℂ)
425243a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (-π(,)π) ⊆ (-π[,]π))
426 iccssre 12255 . . . . . . . . . . . . . . . . . . . 20 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
42739, 38, 426mp2an 708 . . . . . . . . . . . . . . . . . . 19 (-π[,]π) ⊆ ℝ
428427a1i 11 . . . . . . . . . . . . . . . . . 18 (⊤ → (-π[,]π) ⊆ ℝ)
429428, 12syl6ss 3615 . . . . . . . . . . . . . . . . 17 (⊤ → (-π[,]π) ⊆ ℂ)
430 eqid 2622 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0}))
43139, 35, 36ltleii 10160 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -π ≤ 0
43235, 38, 37ltleii 10160 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ≤ π
43339, 38elicc2i 12239 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
43435, 431, 432, 433mpbir3an 1244 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ (-π[,]π)
435159snss 4316 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ (-π[,]π) ↔ {0} ⊆ (-π[,]π))
436434, 435mpbi 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 {0} ⊆ (-π[,]π)
437 ssequn2 3786 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({0} ⊆ (-π[,]π) ↔ ((-π[,]π) ∪ {0}) = (-π[,]π))
438436, 437mpbi 220 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-π[,]π) ∪ {0}) = (-π[,]π)
439438oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . 23 ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})) = ((TopOpen‘ℂfld) ↾t (-π[,]π))
440 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25 (topGen‘ran (,)) = (topGen‘ran (,))
44156, 440tgiooss 39733 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-π[,]π) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (-π[,]π)) = ((topGen‘ran (,)) ↾t (-π[,]π)))
442427, 441ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ((TopOpen‘ℂfld) ↾t (-π[,]π)) = ((topGen‘ran (,)) ↾t (-π[,]π))
443439, 442eqtri 2644 . . . . . . . . . . . . . . . . . . . . . 22 ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})) = ((topGen‘ran (,)) ↾t (-π[,]π))
444443fveq2i 6194 . . . . . . . . . . . . . . . . . . . . 21 (int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0}))) = (int‘((topGen‘ran (,)) ↾t (-π[,]π)))
445159snss 4316 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (-π(,)π) ↔ {0} ⊆ (-π(,)π))
44644, 445mpbi 220 . . . . . . . . . . . . . . . . . . . . . 22 {0} ⊆ (-π(,)π)
447 ssequn2 3786 . . . . . . . . . . . . . . . . . . . . . 22 ({0} ⊆ (-π(,)π) ↔ ((-π(,)π) ∪ {0}) = (-π(,)π))
448446, 447mpbi 220 . . . . . . . . . . . . . . . . . . . . 21 ((-π(,)π) ∪ {0}) = (-π(,)π)
449444, 448fveq12i 6196 . . . . . . . . . . . . . . . . . . . 20 ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0})) = ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘(-π(,)π))
450 resttopon 20965 . . . . . . . . . . . . . . . . . . . . . . 23 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (-π[,]π) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (-π[,]π)) ∈ (TopOn‘(-π[,]π)))
45160, 427, 450mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22 ((topGen‘ran (,)) ↾t (-π[,]π)) ∈ (TopOn‘(-π[,]π))
452451topontopi 20720 . . . . . . . . . . . . . . . . . . . . 21 ((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top
453 retop 22565 . . . . . . . . . . . . . . . . . . . . . . . 24 (topGen‘ran (,)) ∈ Top
454 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π[,]π) ∈ V
455453, 454pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . 23 ((topGen‘ran (,)) ∈ Top ∧ (-π[,]π) ∈ V)
456 ssid 3624 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)π) ⊆ (-π(,)π)
45733, 243, 4563pm3.2i 1239 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π(,)π) ∈ (topGen‘ran (,)) ∧ (-π(,)π) ⊆ (-π[,]π) ∧ (-π(,)π) ⊆ (-π(,)π))
458 restopnb 20979 . . . . . . . . . . . . . . . . . . . . . . 23 ((((topGen‘ran (,)) ∈ Top ∧ (-π[,]π) ∈ V) ∧ ((-π(,)π) ∈ (topGen‘ran (,)) ∧ (-π(,)π) ⊆ (-π[,]π) ∧ (-π(,)π) ⊆ (-π(,)π))) → ((-π(,)π) ∈ (topGen‘ran (,)) ↔ (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π))))
459455, 457, 458mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22 ((-π(,)π) ∈ (topGen‘ran (,)) ↔ (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π)))
46033, 459mpbi 220 . . . . . . . . . . . . . . . . . . . . 21 (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π))
461 isopn3i 20886 . . . . . . . . . . . . . . . . . . . . 21 ((((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π))) → ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘(-π(,)π)) = (-π(,)π))
462452, 460, 461mp2an 708 . . . . . . . . . . . . . . . . . . . 20 ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘(-π(,)π)) = (-π(,)π)
463 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (-π(,)π) = (-π(,)π)
464449, 462, 4633eqtrri 2649 . . . . . . . . . . . . . . . . . . 19 (-π(,)π) = ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0}))
46544, 464eleqtri 2699 . . . . . . . . . . . . . . . . . 18 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0}))
466465a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0})))
467424, 425, 429, 56, 430, 466limcres 23650 . . . . . . . . . . . . . . . 16 (⊤ → (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0))
468467trud 1493 . . . . . . . . . . . . . . 15 (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
469468eqcomi 2631 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0) = (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0)
470 resmpt 5449 . . . . . . . . . . . . . . . 16 ((-π(,)π) ⊆ (-π[,]π) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) = (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
471243, 470ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) = (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
472471oveq1i 6660 . . . . . . . . . . . . . 14 (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0) = ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
473421, 469, 4723eqtri 2648 . . . . . . . . . . . . 13 (𝐾 lim 0) = ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
474 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
475 iftrue 4092 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 0 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = 1)
476 1cnd 10056 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 0 → 1 ∈ ℂ)
477475, 476eqeltrd 2701 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 0 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
478477adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π(,)π) ∧ 𝑠 = 0) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
479 iffalse 4095 . . . . . . . . . . . . . . . . . . . 20 𝑠 = 0 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
480479adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
481141adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ℂ)
482 2cnd 11093 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → 2 ∈ ℂ)
483481halfcld 11277 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (𝑠 / 2) ∈ ℂ)
484483sincld 14860 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ∈ ℂ)
485482, 484mulcld 10060 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
48681a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → 2 ≠ 0)
487243sseli 3599 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (-π(,)π) → 𝑠 ∈ (-π[,]π))
488 neqne 2802 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 = 0 → 𝑠 ≠ 0)
489 fourierdlem44 40368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
490487, 488, 489syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ≠ 0)
491482, 484, 486, 490mulne0d 10679 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
492481, 485, 491divcld 10801 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
493480, 492eqeltrd 2701 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
494478, 493pm2.61dan 832 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π(,)π) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
495474, 494fmpti 6383 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π(,)π)⟶ℂ
496495a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π(,)π)⟶ℂ)
497496limcdif 23640 . . . . . . . . . . . . . 14 (⊤ → ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) lim 0))
498497trud 1493 . . . . . . . . . . . . 13 ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) lim 0)
499 resmpt 5449 . . . . . . . . . . . . . . . 16 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
50016, 499ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
501 eldifn 3733 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ 𝑠 ∈ {0})
502 velsn 4193 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ {0} ↔ 𝑠 = 0)
503501, 502sylnib 318 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ 𝑠 = 0)
504503, 479syl 17 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((-π(,)π) ∖ {0}) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
505504mpteq2ia 4740 . . . . . . . . . . . . . . 15 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
506500, 505eqtri 2644 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
507506oveq1i 6660 . . . . . . . . . . . . 13 (((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0)
508473, 498, 5073eqtrri 2649 . . . . . . . . . . . 12 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0) = (𝐾 lim 0)
509420, 508eleqtri 2699 . . . . . . . . . . 11 1 ∈ (𝐾 lim 0)
510509a1i 11 . . . . . . . . . 10 (𝑠 = 0 → 1 ∈ (𝐾 lim 0))
511 fveq2 6191 . . . . . . . . . . 11 (𝑠 = 0 → (𝐾𝑠) = (𝐾‘0))
512475, 10, 47fvmpt 6282 . . . . . . . . . . . 12 (0 ∈ (-π[,]π) → (𝐾‘0) = 1)
513434, 512ax-mp 5 . . . . . . . . . . 11 (𝐾‘0) = 1
514511, 513syl6eq 2672 . . . . . . . . . 10 (𝑠 = 0 → (𝐾𝑠) = 1)
515 oveq2 6658 . . . . . . . . . 10 (𝑠 = 0 → (𝐾 lim 𝑠) = (𝐾 lim 0))
516510, 514, 5153eltr4d 2716 . . . . . . . . 9 (𝑠 = 0 → (𝐾𝑠) ∈ (𝐾 lim 𝑠))
517427, 12sstri 3612 . . . . . . . . . . 11 (-π[,]π) ⊆ ℂ
518517a1i 11 . . . . . . . . . 10 (𝑠 = 0 → (-π[,]π) ⊆ ℂ)
51938a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → π ∈ ℝ)
520519renegcld 10457 . . . . . . . . . . 11 (𝑠 = 0 → -π ∈ ℝ)
521 id 22 . . . . . . . . . . . 12 (𝑠 = 0 → 𝑠 = 0)
52235a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → 0 ∈ ℝ)
523521, 522eqeltrd 2701 . . . . . . . . . . 11 (𝑠 = 0 → 𝑠 ∈ ℝ)
524431, 521syl5breqr 4691 . . . . . . . . . . 11 (𝑠 = 0 → -π ≤ 𝑠)
525521, 432syl6eqbr 4692 . . . . . . . . . . 11 (𝑠 = 0 → 𝑠 ≤ π)
526520, 519, 523, 524, 525eliccd 39726 . . . . . . . . . 10 (𝑠 = 0 → 𝑠 ∈ (-π[,]π))
52757oveq1i 6660 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (-π[,]π)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-π[,]π))
52856cnfldtop 22587 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ Top
529 reex 10027 . . . . . . . . . . . . 13 ℝ ∈ V
530 restabs 20969 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (-π[,]π) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-π[,]π)) = ((TopOpen‘ℂfld) ↾t (-π[,]π)))
531528, 427, 529, 530mp3an 1424 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-π[,]π)) = ((TopOpen‘ℂfld) ↾t (-π[,]π))
532527, 531eqtri 2644 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (-π[,]π)) = ((TopOpen‘ℂfld) ↾t (-π[,]π))
53356, 532cnplimc 23651 . . . . . . . . . 10 (((-π[,]π) ⊆ ℂ ∧ 𝑠 ∈ (-π[,]π)) → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ (𝐾𝑠) ∈ (𝐾 lim 𝑠))))
534518, 526, 533syl2anc 693 . . . . . . . . 9 (𝑠 = 0 → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ (𝐾𝑠) ∈ (𝐾 lim 𝑠))))
53515, 516, 534mpbir2and 957 . . . . . . . 8 (𝑠 = 0 → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
536535adantl 482 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 = 0) → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
537 simpl 473 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ (-π[,]π))
538502notbii 310 . . . . . . . . . . . . 13 𝑠 ∈ {0} ↔ ¬ 𝑠 = 0)
539538biimpri 218 . . . . . . . . . . . 12 𝑠 = 0 → ¬ 𝑠 ∈ {0})
540539adantl 482 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → ¬ 𝑠 ∈ {0})
541537, 540eldifd 3585 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
542 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥) = ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
543542eleq2d 2687 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)))
544429ssdifssd 3748 . . . . . . . . . . . . . . . . 17 (⊤ → ((-π[,]π) ∖ {0}) ⊆ ℂ)
545544, 145idcncfg 40085 . . . . . . . . . . . . . . . 16 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ 𝑠) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
546 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2))))
547 2cnd 11093 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 2 ∈ ℂ)
548 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ∈ (-π[,]π))
549517, 548sseldi 3601 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ∈ ℂ)
550549halfcld 11277 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 / 2) ∈ ℂ)
551550sincld 14860 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (sin‘(𝑠 / 2)) ∈ ℂ)
552547, 551mulcld 10060 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
55381a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 2 ≠ 0)
554 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ≠ 0)
555548, 554, 489syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (sin‘(𝑠 / 2)) ≠ 0)
556547, 551, 553, 555mulne0d 10679 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
557556neneqd 2799 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ (2 · (sin‘(𝑠 / 2))) = 0)
558 elsng 4191 . . . . . . . . . . . . . . . . . . . . . 22 ((2 · (sin‘(𝑠 / 2))) ∈ ℂ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
559552, 558syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
560557, 559mtbird 315 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ (2 · (sin‘(𝑠 / 2))) ∈ {0})
561552, 560eldifd 3585 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
562546, 561fmpti 6383 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))):((-π[,]π) ∖ {0})⟶(ℂ ∖ {0})
563 difss 3737 . . . . . . . . . . . . . . . . . . 19 (ℂ ∖ {0}) ⊆ ℂ
564 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ ↦ 2) = (𝑠 ∈ ℂ ↦ 2)
565175, 176, 175constcncfg 40084 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℂ → (𝑠 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
566102, 565mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑠 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
567 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → 2 ∈ ℂ)
568564, 566, 544, 145, 567cncfmptssg 40083 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ 2) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
569549, 547, 553divrecd 10804 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 / 2) = (𝑠 · (1 / 2)))
570569mpteq2ia 4740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / 2)) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 · (1 / 2)))
571 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ℂ ↦ (1 / 2)) = (𝑠 ∈ ℂ ↦ (1 / 2))
572144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 / 2) ∈ ℂ → ℂ ⊆ ℂ)
573 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 / 2) ∈ ℂ → (1 / 2) ∈ ℂ)
574572, 573, 572constcncfg 40084 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 2) ∈ ℂ → (𝑠 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
57594, 574mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → (𝑠 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
57694a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⊤ ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → (1 / 2) ∈ ℂ)
577571, 575, 544, 145, 576cncfmptssg 40083 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (1 / 2)) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
578545, 577mulcncf 23215 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 · (1 / 2))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
579570, 578syl5eqel 2705 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / 2)) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
580182, 579cncfmpt1f 22716 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (sin‘(𝑠 / 2))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
581568, 580mulcncf 23215 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
582581trud 1493 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ)
583 cncffvrn 22701 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ)) → ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))):((-π[,]π) ∖ {0})⟶(ℂ ∖ {0})))
584563, 582, 583mp2an 708 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))):((-π[,]π) ∖ {0})⟶(ℂ ∖ {0}))
585562, 584mpbir 221 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0}))
586585a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0})))
587545, 586divcncf 23216 . . . . . . . . . . . . . . 15 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
588587trud 1493 . . . . . . . . . . . . . 14 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ)
589428ssdifssd 3748 . . . . . . . . . . . . . . . . 17 (⊤ → ((-π[,]π) ∖ {0}) ⊆ ℝ)
590589trud 1493 . . . . . . . . . . . . . . . 16 ((-π[,]π) ∖ {0}) ⊆ ℝ
591590, 12sstri 3612 . . . . . . . . . . . . . . 15 ((-π[,]π) ∖ {0}) ⊆ ℂ
59257oveq1i 6660 . . . . . . . . . . . . . . . . 17 ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((-π[,]π) ∖ {0}))
593 restabs 20969 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((-π[,]π) ∖ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∖ {0})))
594528, 590, 529, 593mp3an 1424 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((-π[,]π) ∖ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∖ {0}))
595592, 594eqtri 2644 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∖ {0}))
596 unicntop 22589 . . . . . . . . . . . . . . . . . . 19 ℂ = (TopOpen‘ℂfld)
597596restid 16094 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
598528, 597ax-mp 5 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
599598eqcomi 2631 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
60056, 595, 599cncfcn 22712 . . . . . . . . . . . . . . 15 ((((-π[,]π) ∖ {0}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((-π[,]π) ∖ {0})–cn→ℂ) = (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld)))
601591, 144, 600mp2an 708 . . . . . . . . . . . . . 14 (((-π[,]π) ∖ {0})–cn→ℂ) = (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld))
602588, 601eleqtri 2699 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld))
603 resttopon 20965 . . . . . . . . . . . . . . 15 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((-π[,]π) ∖ {0}) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) ∈ (TopOn‘((-π[,]π) ∖ {0})))
60460, 590, 603mp2an 708 . . . . . . . . . . . . . 14 ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) ∈ (TopOn‘((-π[,]π) ∖ {0}))
60556cnfldtopon 22586 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
606 cncnp 21084 . . . . . . . . . . . . . 14 ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) ∈ (TopOn‘((-π[,]π) ∖ {0})) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))):((-π[,]π) ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥))))
607604, 605, 606mp2an 708 . . . . . . . . . . . . 13 ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))):((-π[,]π) ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥)))
608602, 607mpbi 220 . . . . . . . . . . . 12 ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))):((-π[,]π) ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥))
609608simpri 478 . . . . . . . . . . 11 𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥)
610543, 609vtoclri 3283 . . . . . . . . . 10 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
611541, 610syl 17 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
61210reseq1i 5392 . . . . . . . . . 10 (𝐾 ↾ ((-π[,]π) ∖ {0})) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π[,]π) ∖ {0}))
613 difss 3737 . . . . . . . . . . 11 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
614 resmpt 5449 . . . . . . . . . . 11 (((-π[,]π) ∖ {0}) ⊆ (-π[,]π) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π[,]π) ∖ {0})) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
615613, 614ax-mp 5 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π[,]π) ∖ {0})) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
616 eldifn 3733 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ 𝑠 ∈ {0})
617616, 502sylnib 318 . . . . . . . . . . . 12 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ 𝑠 = 0)
618617, 479syl 17 . . . . . . . . . . 11 (𝑠 ∈ ((-π[,]π) ∖ {0}) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
619618mpteq2ia 4740 . . . . . . . . . 10 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
620612, 615, 6193eqtri 2648 . . . . . . . . 9 (𝐾 ↾ ((-π[,]π) ∖ {0})) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
621 restabs 20969 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π) ∧ (-π[,]π) ∈ V) → (((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) = ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})))
622453, 613, 454, 621mp3an 1424 . . . . . . . . . . 11 (((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) = ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0}))
623622oveq1i 6660 . . . . . . . . . 10 ((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld)) = (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))
624623fveq1i 6192 . . . . . . . . 9 (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠) = ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)
625611, 620, 6243eltr4g 2718 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝐾 ↾ ((-π[,]π) ∖ {0})) ∈ (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
626452, 613pm3.2i 471 . . . . . . . . . 10 (((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π))
627626a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)))
628 ssdif 3745 . . . . . . . . . . . . . 14 ((-π[,]π) ⊆ ℝ → ((-π[,]π) ∖ {0}) ⊆ (ℝ ∖ {0}))
629427, 628ax-mp 5 . . . . . . . . . . . . 13 ((-π[,]π) ∖ {0}) ⊆ (ℝ ∖ {0})
630629, 541sseldi 3601 . . . . . . . . . . . 12 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ (ℝ ∖ {0}))
631 sscon 3744 . . . . . . . . . . . . . . . . 17 ({0} ⊆ (-π[,]π) → (ℝ ∖ (-π[,]π)) ⊆ (ℝ ∖ {0}))
632436, 631ax-mp 5 . . . . . . . . . . . . . . . 16 (ℝ ∖ (-π[,]π)) ⊆ (ℝ ∖ {0})
633629, 632unssi 3788 . . . . . . . . . . . . . . 15 (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))) ⊆ (ℝ ∖ {0})
634 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
635 eldifn 3733 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (ℝ ∖ {0}) → ¬ 𝑠 ∈ {0})
636635adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → ¬ 𝑠 ∈ {0})
637634, 636eldifd 3585 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
638 elun1 3780 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
639637, 638syl 17 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
640 eldifi 3732 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (ℝ ∖ {0}) → 𝑠 ∈ ℝ)
641640adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
642 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → ¬ 𝑠 ∈ (-π[,]π))
643641, 642eldifd 3585 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (ℝ ∖ (-π[,]π)))
644 elun2 3781 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (ℝ ∖ (-π[,]π)) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
645643, 644syl 17 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
646639, 645pm2.61dan 832 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (ℝ ∖ {0}) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
647646ssriv 3607 . . . . . . . . . . . . . . 15 (ℝ ∖ {0}) ⊆ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))
648633, 647eqssi 3619 . . . . . . . . . . . . . 14 (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))) = (ℝ ∖ {0})
649648fveq2i 6194 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) = ((int‘(topGen‘ran (,)))‘(ℝ ∖ {0}))
65061cldopn 20835 . . . . . . . . . . . . . . 15 ({0} ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ {0}) ∈ (topGen‘ran (,)))
65159, 650ax-mp 5 . . . . . . . . . . . . . 14 (ℝ ∖ {0}) ∈ (topGen‘ran (,))
652 isopn3i 20886 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (ℝ ∖ {0}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(ℝ ∖ {0})) = (ℝ ∖ {0}))
653453, 651, 652mp2an 708 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(ℝ ∖ {0})) = (ℝ ∖ {0})
654649, 653eqtri 2644 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) = (ℝ ∖ {0})
655630, 654syl6eleqr 2712 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))))
656655, 537elind 3798 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ (((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) ∩ (-π[,]π)))
657 eqid 2622 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (-π[,]π)) = ((topGen‘ran (,)) ↾t (-π[,]π))
65861, 657restntr 20986 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-π[,]π) ⊆ ℝ ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)) → ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})) = (((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) ∩ (-π[,]π)))
659453, 427, 613, 658mp3an 1424 . . . . . . . . . 10 ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})) = (((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) ∩ (-π[,]π))
660656, 659syl6eleqr 2712 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})))
66114a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝐾:(-π[,]π)⟶ℂ)
662451toponunii 20721 . . . . . . . . . 10 (-π[,]π) = ((topGen‘ran (,)) ↾t (-π[,]π))
663662, 596cnprest 21093 . . . . . . . . 9 (((((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)) ∧ (𝑠 ∈ ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})) ∧ 𝐾:(-π[,]π)⟶ℂ)) → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾 ↾ ((-π[,]π) ∖ {0})) ∈ (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)))
664627, 660, 661, 663syl12anc 1324 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾 ↾ ((-π[,]π) ∖ {0})) ∈ (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)))
665625, 664mpbird 247 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
666536, 665pm2.61dan 832 . . . . . 6 (𝑠 ∈ (-π[,]π) → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
667666rgen 2922 . . . . 5 𝑠 ∈ (-π[,]π)𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠)
668 cncnp 21084 . . . . . 6 ((((topGen‘ran (,)) ↾t (-π[,]π)) ∈ (TopOn‘(-π[,]π)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐾 ∈ (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ ∀𝑠 ∈ (-π[,]π)𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))))
669451, 605, 668mp2an 708 . . . . 5 (𝐾 ∈ (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ ∀𝑠 ∈ (-π[,]π)𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠)))
67014, 667, 669mpbir2an 955 . . . 4 𝐾 ∈ (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld))
67156, 532, 599cncfcn 22712 . . . . . 6 (((-π[,]π) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℂ) = (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)))
672517, 144, 671mp2an 708 . . . . 5 ((-π[,]π)–cn→ℂ) = (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld))
673672eqcomi 2631 . . . 4 (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)) = ((-π[,]π)–cn→ℂ)
674670, 673eleqtri 2699 . . 3 𝐾 ∈ ((-π[,]π)–cn→ℂ)
675 cncffvrn 22701 . . 3 ((ℝ ⊆ ℂ ∧ 𝐾 ∈ ((-π[,]π)–cn→ℂ)) → (𝐾 ∈ ((-π[,]π)–cn→ℝ) ↔ 𝐾:(-π[,]π)⟶ℝ))
67612, 674, 675mp2an 708 . 2 (𝐾 ∈ ((-π[,]π)–cn→ℝ) ↔ 𝐾:(-π[,]π)⟶ℝ)
67711, 676mpbir 221 1 𝐾 ∈ ((-π[,]π)–cn→ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384  w3a 1037   = wceq 1483  wtru 1484  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  ifcif 4086  {csn 4177  {cpr 4179   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  -cneg 10267   / cdiv 10684  2c2 11070  +crp 11832  (,)cioo 12175  [,]cicc 12178  cre 13837  sincsin 14794  cosccos 14795  πcpi 14797  t crest 16081  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  Clsdccld 20820  intcnt 20821   Cn ccn 21028   CnP ccnp 21029  cnccncf 22679   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem77  40400  fourierdlem78  40401  fourierdlem85  40408  fourierdlem88  40411
  Copyright terms: Public domain W3C validator