Proof of Theorem dvcnvrelem2
| Step | Hyp | Ref
| Expression |
| 1 | | dvcnvre.t |
. . . . . 6
⊢ 𝑇 = (topGen‘ran
(,)) |
| 2 | | retop 22565 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ Top |
| 3 | 1, 2 | eqeltri 2697 |
. . . . 5
⊢ 𝑇 ∈ Top |
| 4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ Top) |
| 5 | | dvcnvre.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) |
| 6 | | f1ofo 6144 |
. . . . . 6
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–onto→𝑌) |
| 7 | | forn 6118 |
. . . . . 6
⊢ (𝐹:𝑋–onto→𝑌 → ran 𝐹 = 𝑌) |
| 8 | 5, 6, 7 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ran 𝐹 = 𝑌) |
| 9 | | dvcnvre.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℝ)) |
| 10 | | cncff 22696 |
. . . . . 6
⊢ (𝐹 ∈ (𝑋–cn→ℝ) → 𝐹:𝑋⟶ℝ) |
| 11 | | frn 6053 |
. . . . . 6
⊢ (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ) |
| 12 | 9, 10, 11 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 13 | 8, 12 | eqsstr3d 3640 |
. . . 4
⊢ (𝜑 → 𝑌 ⊆ ℝ) |
| 14 | | imassrn 5477 |
. . . . 5
⊢ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ran 𝐹 |
| 15 | 14, 8 | syl5sseq 3653 |
. . . 4
⊢ (𝜑 → (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) |
| 16 | | uniretop 22566 |
. . . . . 6
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 17 | 1 | unieqi 4445 |
. . . . . 6
⊢ ∪ 𝑇 =
∪ (topGen‘ran (,)) |
| 18 | 16, 17 | eqtr4i 2647 |
. . . . 5
⊢ ℝ =
∪ 𝑇 |
| 19 | 18 | ntrss 20859 |
. . . 4
⊢ ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘𝑇)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌)) |
| 20 | 4, 13, 15, 19 | syl3anc 1326 |
. . 3
⊢ (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘𝑌)) |
| 21 | | dvcnvre.d |
. . . . 5
⊢ (𝜑 → dom (ℝ D 𝐹) = 𝑋) |
| 22 | | dvcnvre.z |
. . . . 5
⊢ (𝜑 → ¬ 0 ∈ ran
(ℝ D 𝐹)) |
| 23 | | dvcnvre.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 24 | | dvcnvre.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
| 25 | | dvcnvre.s |
. . . . 5
⊢ (𝜑 → ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) |
| 26 | 9, 21, 22, 5, 23, 24, 25 | dvcnvrelem1 23780 |
. . . 4
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((int‘(topGen‘ran
(,)))‘(𝐹 “
((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 27 | 1 | fveq2i 6194 |
. . . . 5
⊢
(int‘𝑇) =
(int‘(topGen‘ran (,))) |
| 28 | 27 | fveq1i 6192 |
. . . 4
⊢
((int‘𝑇)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran
(,)))‘(𝐹 “
((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 29 | 26, 28 | syl6eleqr 2712 |
. . 3
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((int‘𝑇)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 30 | 20, 29 | sseldd 3604 |
. 2
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((int‘𝑇)‘𝑌)) |
| 31 | | f1ocnv 6149 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
| 32 | | f1of 6137 |
. . . . . . 7
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) |
| 33 | 5, 31, 32 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ◡𝐹:𝑌⟶𝑋) |
| 34 | | ffun 6048 |
. . . . . 6
⊢ (◡𝐹:𝑌⟶𝑋 → Fun ◡𝐹) |
| 35 | | funcnvres 5967 |
. . . . . 6
⊢ (Fun
◡𝐹 → ◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (◡𝐹 ↾ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 36 | 33, 34, 35 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (◡𝐹 ↾ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 37 | | dvbsss 23666 |
. . . . . . . . . . 11
⊢ dom
(ℝ D 𝐹) ⊆
ℝ |
| 38 | 21, 37 | syl6eqssr 3656 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| 39 | | ax-resscn 9993 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
| 40 | 38, 39 | syl6ss 3615 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 41 | | cncfss 22702 |
. . . . . . . . 9
⊢ ((((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 ∧ 𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→𝑋)) |
| 42 | 25, 40, 41 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→𝑋)) |
| 43 | | f1of1 6136 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–1-1→𝑌) |
| 44 | 5, 43 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑋–1-1→𝑌) |
| 45 | | f1ores 6151 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) → (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))):((𝐶 − 𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 46 | 44, 25, 45 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))):((𝐶 − 𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 47 | | dvcnvre.j |
. . . . . . . . . . . . . . 15
⊢ 𝐽 =
(TopOpen‘ℂfld) |
| 48 | 47 | tgioo2 22606 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) = (𝐽 ↾t
ℝ) |
| 49 | 1, 48 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢ 𝑇 = (𝐽 ↾t
ℝ) |
| 50 | 49 | oveq1i 6660 |
. . . . . . . . . . . 12
⊢ (𝑇 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = ((𝐽 ↾t ℝ)
↾t ((𝐶
− 𝑅)[,](𝐶 + 𝑅))) |
| 51 | 47 | cnfldtop 22587 |
. . . . . . . . . . . . . 14
⊢ 𝐽 ∈ Top |
| 52 | 51 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Top) |
| 53 | 25, 38 | sstrd 3613 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ) |
| 54 | | reex 10027 |
. . . . . . . . . . . . . 14
⊢ ℝ
∈ V |
| 55 | 54 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ∈
V) |
| 56 | | restabs 20969 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ ∧ ℝ ∈ V)
→ ((𝐽
↾t ℝ) ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝐽 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 57 | 52, 53, 55, 56 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐽 ↾t ℝ)
↾t ((𝐶
− 𝑅)[,](𝐶 + 𝑅))) = (𝐽 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 58 | 50, 57 | syl5eq 2668 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝐽 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 59 | 38, 23 | sseldd 3604 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 60 | 24 | rpred 11872 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 61 | 59, 60 | resubcld 10458 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 − 𝑅) ∈ ℝ) |
| 62 | 59, 60 | readdcld 10069 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 + 𝑅) ∈ ℝ) |
| 63 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑇 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑇 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 64 | 1, 63 | icccmp 22628 |
. . . . . . . . . . . 12
⊢ (((𝐶 − 𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝑇 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ Comp) |
| 65 | 61, 62, 64 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ Comp) |
| 66 | 58, 65 | eqeltrrd 2702 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ Comp) |
| 67 | | f1of 6137 |
. . . . . . . . . . . 12
⊢ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))):((𝐶 − 𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) → (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))):((𝐶 − 𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 68 | 46, 67 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))):((𝐶 − 𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 69 | 12, 39 | syl6ss 3615 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝐹 ⊆ ℂ) |
| 70 | 14, 69 | syl5ss 3614 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ) |
| 71 | | rescncf 22700 |
. . . . . . . . . . . . 13
⊢ (((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋–cn→ℝ) → (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶 − 𝑅)[,](𝐶 + 𝑅))–cn→ℝ))) |
| 72 | 25, 9, 71 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶 − 𝑅)[,](𝐶 + 𝑅))–cn→ℝ)) |
| 73 | | cncffvrn 22701 |
. . . . . . . . . . . 12
⊢ (((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶 − 𝑅)[,](𝐶 + 𝑅))–cn→ℝ)) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶 − 𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))):((𝐶 − 𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 74 | 70, 72, 73 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶 − 𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ↔ (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))):((𝐶 − 𝑅)[,](𝐶 + 𝑅))⟶(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 75 | 68, 74 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶 − 𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 76 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝐽 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝐽 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 77 | 47, 76 | cncfcnvcn 22724 |
. . . . . . . . . 10
⊢ (((𝐽 ↾t ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ Comp ∧ (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶 − 𝑅)[,](𝐶 + 𝑅))–cn→(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))):((𝐶 − 𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ↔ ◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 78 | 66, 75, 77 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))):((𝐶 − 𝑅)[,](𝐶 + 𝑅))–1-1-onto→(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ↔ ◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 79 | 46, 78 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → ◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 80 | 42, 79 | sseldd 3604 |
. . . . . . 7
⊢ (𝜑 → ◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→𝑋)) |
| 81 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 82 | | dvcnvre.m |
. . . . . . . . 9
⊢ 𝑀 = (𝐽 ↾t 𝑋) |
| 83 | 47, 81, 82 | cncfcn 22712 |
. . . . . . . 8
⊢ (((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→𝑋) = ((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀)) |
| 84 | 70, 40, 83 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))–cn→𝑋) = ((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀)) |
| 85 | 80, 84 | eleqtrd 2703 |
. . . . . 6
⊢ (𝜑 → ◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀)) |
| 86 | 59, 24 | ltsubrpd 11904 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 − 𝑅) < 𝐶) |
| 87 | 61, 59, 86 | ltled 10185 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 − 𝑅) ≤ 𝐶) |
| 88 | 59, 24 | ltaddrpd 11905 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 < (𝐶 + 𝑅)) |
| 89 | 59, 62, 88 | ltled 10185 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ≤ (𝐶 + 𝑅)) |
| 90 | | elicc2 12238 |
. . . . . . . . . 10
⊢ (((𝐶 − 𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶 − 𝑅) ≤ 𝐶 ∧ 𝐶 ≤ (𝐶 + 𝑅)))) |
| 91 | 61, 62, 90 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶 − 𝑅) ≤ 𝐶 ∧ 𝐶 ≤ (𝐶 + 𝑅)))) |
| 92 | 59, 87, 89, 91 | mpbir3and 1245 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 93 | | ffun 6048 |
. . . . . . . . . 10
⊢ (𝐹:𝑋⟶ℝ → Fun 𝐹) |
| 94 | 9, 10, 93 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐹) |
| 95 | | fdm 6051 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋⟶ℝ → dom 𝐹 = 𝑋) |
| 96 | 9, 10, 95 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = 𝑋) |
| 97 | 25, 96 | sseqtr4d 3642 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) |
| 98 | | funfvima2 6493 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐹‘𝐶) ∈ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 99 | 94, 97, 98 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐹‘𝐶) ∈ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 100 | 92, 99 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐶) ∈ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 101 | 47 | cnfldtopon 22586 |
. . . . . . . . 9
⊢ 𝐽 ∈
(TopOn‘ℂ) |
| 102 | | resttopon 20965 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ℂ) → (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 103 | 101, 70, 102 | sylancr 695 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 104 | | toponuni 20719 |
. . . . . . . 8
⊢ ((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∈ (TopOn‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = ∪ (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 105 | 103, 104 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = ∪ (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 106 | 100, 105 | eleqtrd 2703 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐶) ∈ ∪ (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 107 | | eqid 2622 |
. . . . . . 7
⊢ ∪ (𝐽
↾t (𝐹
“ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ∪ (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 108 | 107 | cncnpi 21082 |
. . . . . 6
⊢ ((◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ ((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) Cn 𝑀) ∧ (𝐹‘𝐶) ∈ ∪ (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) → ◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹‘𝐶))) |
| 109 | 85, 106, 108 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ◡(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹‘𝐶))) |
| 110 | 36, 109 | eqeltrrd 2702 |
. . . 4
⊢ (𝜑 → (◡𝐹 ↾ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹‘𝐶))) |
| 111 | | dvcnvre.n |
. . . . . . . 8
⊢ 𝑁 = (𝐽 ↾t 𝑌) |
| 112 | 111 | oveq1i 6660 |
. . . . . . 7
⊢ (𝑁 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ((𝐽 ↾t 𝑌) ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 113 | | ssexg 4804 |
. . . . . . . . 9
⊢ ((𝑌 ⊆ ℝ ∧ ℝ
∈ V) → 𝑌 ∈
V) |
| 114 | 13, 54, 113 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ V) |
| 115 | | restabs 20969 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌 ∧ 𝑌 ∈ V) → ((𝐽 ↾t 𝑌) ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 116 | 52, 15, 114, 115 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → ((𝐽 ↾t 𝑌) ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 117 | 112, 116 | syl5eq 2668 |
. . . . . 6
⊢ (𝜑 → (𝑁 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = (𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 118 | 117 | oveq1d 6665 |
. . . . 5
⊢ (𝜑 → ((𝑁 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀) = ((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)) |
| 119 | 118 | fveq1d 6193 |
. . . 4
⊢ (𝜑 → (((𝑁 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹‘𝐶)) = (((𝐽 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹‘𝐶))) |
| 120 | 110, 119 | eleqtrrd 2704 |
. . 3
⊢ (𝜑 → (◡𝐹 ↾ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹‘𝐶))) |
| 121 | 13, 39 | syl6ss 3615 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ⊆ ℂ) |
| 122 | | resttopon 20965 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑌 ⊆ ℂ)
→ (𝐽
↾t 𝑌)
∈ (TopOn‘𝑌)) |
| 123 | 101, 121,
122 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
| 124 | 111, 123 | syl5eqel 2705 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (TopOn‘𝑌)) |
| 125 | | topontop 20718 |
. . . . 5
⊢ (𝑁 ∈ (TopOn‘𝑌) → 𝑁 ∈ Top) |
| 126 | 124, 125 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ Top) |
| 127 | | toponuni 20719 |
. . . . . 6
⊢ (𝑁 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝑁) |
| 128 | 124, 127 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 = ∪ 𝑁) |
| 129 | 15, 128 | sseqtrd 3641 |
. . . 4
⊢ (𝜑 → (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ∪
𝑁) |
| 130 | 15, 13 | sstrd 3613 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ℝ) |
| 131 | | difssd 3738 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ ∖ 𝑌) ⊆
ℝ) |
| 132 | 130, 131 | unssd 3789 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ) |
| 133 | | ssun1 3776 |
. . . . . . . . 9
⊢ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) |
| 134 | 133 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) |
| 135 | 18 | ntrss 20859 |
. . . . . . . 8
⊢ ((𝑇 ∈ Top ∧ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)) ⊆ ℝ ∧ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) → ((int‘𝑇)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)))) |
| 136 | 4, 132, 134, 135 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → ((int‘𝑇)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ⊆ ((int‘𝑇)‘((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)))) |
| 137 | 136, 29 | sseldd 3604 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((int‘𝑇)‘((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌)))) |
| 138 | | f1of 6137 |
. . . . . . . 8
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋⟶𝑌) |
| 139 | 5, 138 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 140 | 139, 23 | ffvelrnd 6360 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝑌) |
| 141 | 137, 140 | elind 3798 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐶) ∈ (((int‘𝑇)‘((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌)) |
| 142 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑇 ↾t 𝑌) = (𝑇 ↾t 𝑌) |
| 143 | 18, 142 | restntr 20986 |
. . . . . . 7
⊢ ((𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ 𝑌) → ((int‘(𝑇 ↾t 𝑌))‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌)) |
| 144 | 4, 13, 15, 143 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → ((int‘(𝑇 ↾t 𝑌))‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = (((int‘𝑇)‘((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌)) |
| 145 | | restabs 20969 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ℝ
∈ V) → ((𝐽
↾t ℝ) ↾t 𝑌) = (𝐽 ↾t 𝑌)) |
| 146 | 52, 13, 55, 145 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐽 ↾t ℝ)
↾t 𝑌) =
(𝐽 ↾t
𝑌)) |
| 147 | 49 | oveq1i 6660 |
. . . . . . . . 9
⊢ (𝑇 ↾t 𝑌) = ((𝐽 ↾t ℝ)
↾t 𝑌) |
| 148 | 146, 147,
111 | 3eqtr4g 2681 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ↾t 𝑌) = 𝑁) |
| 149 | 148 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 → (int‘(𝑇 ↾t 𝑌)) = (int‘𝑁)) |
| 150 | 149 | fveq1d 6193 |
. . . . . 6
⊢ (𝜑 → ((int‘(𝑇 ↾t 𝑌))‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ((int‘𝑁)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 151 | 144, 150 | eqtr3d 2658 |
. . . . 5
⊢ (𝜑 → (((int‘𝑇)‘((𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∪ (ℝ ∖ 𝑌))) ∩ 𝑌) = ((int‘𝑁)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 152 | 141, 151 | eleqtrd 2703 |
. . . 4
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 153 | 128 | feq2d 6031 |
. . . . . 6
⊢ (𝜑 → (◡𝐹:𝑌⟶𝑋 ↔ ◡𝐹:∪ 𝑁⟶𝑋)) |
| 154 | 33, 153 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ◡𝐹:∪ 𝑁⟶𝑋) |
| 155 | | resttopon 20965 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑋 ⊆ ℂ)
→ (𝐽
↾t 𝑋)
∈ (TopOn‘𝑋)) |
| 156 | 101, 40, 155 | sylancr 695 |
. . . . . . 7
⊢ (𝜑 → (𝐽 ↾t 𝑋) ∈ (TopOn‘𝑋)) |
| 157 | 82, 156 | syl5eqel 2705 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑋)) |
| 158 | | toponuni 20719 |
. . . . . 6
⊢ (𝑀 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑀) |
| 159 | | feq3 6028 |
. . . . . 6
⊢ (𝑋 = ∪
𝑀 → (◡𝐹:∪ 𝑁⟶𝑋 ↔ ◡𝐹:∪ 𝑁⟶∪ 𝑀)) |
| 160 | 157, 158,
159 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (◡𝐹:∪ 𝑁⟶𝑋 ↔ ◡𝐹:∪ 𝑁⟶∪ 𝑀)) |
| 161 | 154, 160 | mpbid 222 |
. . . 4
⊢ (𝜑 → ◡𝐹:∪ 𝑁⟶∪ 𝑀) |
| 162 | | eqid 2622 |
. . . . 5
⊢ ∪ 𝑁 =
∪ 𝑁 |
| 163 | | eqid 2622 |
. . . . 5
⊢ ∪ 𝑀 =
∪ 𝑀 |
| 164 | 162, 163 | cnprest 21093 |
. . . 4
⊢ (((𝑁 ∈ Top ∧ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ⊆ ∪
𝑁) ∧ ((𝐹‘𝐶) ∈ ((int‘𝑁)‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∧ ◡𝐹:∪ 𝑁⟶∪ 𝑀))
→ (◡𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹‘𝐶)) ↔ (◡𝐹 ↾ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹‘𝐶)))) |
| 165 | 126, 129,
152, 161, 164 | syl22anc 1327 |
. . 3
⊢ (𝜑 → (◡𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹‘𝐶)) ↔ (◡𝐹 ↾ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∈ (((𝑁 ↾t (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) CnP 𝑀)‘(𝐹‘𝐶)))) |
| 166 | 120, 165 | mpbird 247 |
. 2
⊢ (𝜑 → ◡𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹‘𝐶))) |
| 167 | 30, 166 | jca 554 |
1
⊢ (𝜑 → ((𝐹‘𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ ◡𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹‘𝐶)))) |