MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvreslem Structured version   Visualization version   GIF version

Theorem dvreslem 23673
Description: Lemma for dvres 23675. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
Assertion
Ref Expression
dvreslem (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvreslem
StepHypRef Expression
1 difss 3737 . . . . . . . . . . . . . . 15 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
2 inss2 3834 . . . . . . . . . . . . . . 15 (𝐴𝐵) ⊆ 𝐵
31, 2sstri 3612 . . . . . . . . . . . . . 14 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
4 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}))
53, 4sseldi 3601 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧𝐵)
6 fvres 6207 . . . . . . . . . . . . 13 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
75, 6syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
8 dvres.t . . . . . . . . . . . . . . . . . 18 𝑇 = (𝐾t 𝑆)
9 dvres.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (TopOpen‘ℂfld)
109cnfldtop 22587 . . . . . . . . . . . . . . . . . . 19 𝐾 ∈ Top
11 dvres.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ⊆ ℂ)
12 cnex 10017 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
13 ssexg 4804 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1411, 12, 13sylancl 694 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ V)
15 resttop 20964 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
1610, 14, 15sylancr 695 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾t 𝑆) ∈ Top)
178, 16syl5eqel 2705 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ Top)
18 inss1 3833 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐵) ⊆ 𝐴
19 dvres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑆)
2018, 19syl5ss 3614 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
219cnfldtopon 22586 . . . . . . . . . . . . . . . . . . . . 21 𝐾 ∈ (TopOn‘ℂ)
22 resttopon 20965 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2321, 11, 22sylancr 695 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
248, 23syl5eqel 2705 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ (TopOn‘𝑆))
25 toponuni 20719 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
2624, 25syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 = 𝑇)
2720, 26sseqtrd 3641 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
28 eqid 2622 . . . . . . . . . . . . . . . . . 18 𝑇 = 𝑇
2928ntrss2 20861 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
3017, 27, 29syl2anc 693 . . . . . . . . . . . . . . . 16 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
3130, 2syl6ss 3615 . . . . . . . . . . . . . . 15 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐵)
3231sselda 3603 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐵)
33 fvres 6207 . . . . . . . . . . . . . 14 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3432, 33syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3534adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
367, 35oveq12d 6668 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
3736oveq1d 6665 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
3837mpteq2dva 4744 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
39 dvres.g . . . . . . . . . . 11 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4039reseq1i 5392 . . . . . . . . . 10 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
41 ssdif 3745 . . . . . . . . . . 11 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
42 resmpt 5449 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
4318, 41, 42mp2b 10 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4440, 43eqtri 2644 . . . . . . . . 9 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4538, 44syl6eqr 2674 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
4645oveq1d 6665 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
47 dvres.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
4847adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐹:𝐴⟶ℂ)
4919, 11sstrd 3613 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
5049adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐴 ⊆ ℂ)
5130, 18syl6ss 3615 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐴)
5251sselda 3603 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐴)
5348, 50, 52dvlem 23660 . . . . . . . . 9 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ (𝐴 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
5453, 39fmptd 6385 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐺:(𝐴 ∖ {𝑥})⟶ℂ)
5518, 41mp1i 13 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
56 difss 3737 . . . . . . . . 9 (𝐴 ∖ {𝑥}) ⊆ 𝐴
5756, 50syl5ss 3614 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∖ {𝑥}) ⊆ ℂ)
58 eqid 2622 . . . . . . . 8 (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
59 difssd 3738 . . . . . . . . . . . . . 14 (𝜑 → ( 𝑇𝐴) ⊆ 𝑇)
6027, 59unssd 3789 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇)
61 ssun1 3776 . . . . . . . . . . . . . 14 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))
6261a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴)))
6328ntrss 20859 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇 ∧ (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6417, 60, 62, 63syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6564, 51ssind 3837 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
6619, 26sseqtrd 3641 . . . . . . . . . . . . 13 (𝜑𝐴 𝑇)
6718a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
68 eqid 2622 . . . . . . . . . . . . . 14 (𝑇t 𝐴) = (𝑇t 𝐴)
6928, 68restntr 20986 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ 𝐴 𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
7017, 66, 67, 69syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
718oveq1i 6660 . . . . . . . . . . . . . . 15 (𝑇t 𝐴) = ((𝐾t 𝑆) ↾t 𝐴)
7210a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Top)
73 restabs 20969 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ 𝐴𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7472, 19, 14, 73syl3anc 1326 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7571, 74syl5eq 2668 . . . . . . . . . . . . . 14 (𝜑 → (𝑇t 𝐴) = (𝐾t 𝐴))
7675fveq2d 6195 . . . . . . . . . . . . 13 (𝜑 → (int‘(𝑇t 𝐴)) = (int‘(𝐾t 𝐴)))
7776fveq1d 6193 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7870, 77eqtr3d 2658 . . . . . . . . . . 11 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7965, 78sseqtrd 3641 . . . . . . . . . 10 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
8079sselda 3603 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
81 undif1 4043 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥})
8230sselda 3603 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ (𝐴𝐵))
8382snssd 4340 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ (𝐴𝐵))
8483, 18syl6ss 3615 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ 𝐴)
85 ssequn2 3786 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴)
8684, 85sylib 208 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∪ {𝑥}) = 𝐴)
8781, 86syl5eq 2668 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
8887oveq2d 6666 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t 𝐴))
8988fveq2d 6195 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))) = (int‘(𝐾t 𝐴)))
90 undif1 4043 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = ((𝐴𝐵) ∪ {𝑥})
91 ssequn2 3786 . . . . . . . . . . . 12 ({𝑥} ⊆ (𝐴𝐵) ↔ ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9283, 91sylib 208 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9390, 92syl5eq 2668 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = (𝐴𝐵))
9489, 93fveq12d 6197 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
9580, 94eleqtrrd 2704 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})))
9654, 55, 57, 9, 58, 95limcres 23650 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥) = (𝐺 lim 𝑥))
9746, 96eqtrd 2656 . . . . . 6 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = (𝐺 lim 𝑥))
9897eleq2d 2687 . . . . 5 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) ↔ 𝑦 ∈ (𝐺 lim 𝑥)))
9998pm5.32da 673 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
100 dvres.b . . . . . . . . 9 (𝜑𝐵𝑆)
101100, 26sseqtrd 3641 . . . . . . . 8 (𝜑𝐵 𝑇)
10228ntrin 20865 . . . . . . . 8 ((𝑇 ∈ Top ∧ 𝐴 𝑇𝐵 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
10317, 66, 101, 102syl3anc 1326 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
104103eleq2d 2687 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ 𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵))))
105 elin 3796 . . . . . 6 (𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
106104, 105syl6bb 276 . . . . 5 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
107106anbi1d 741 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
10899, 107bitrd 268 . . 3 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
109 an32 839 . . 3 (((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
110108, 109syl6bb 276 . 2 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
111 eqid 2622 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
112 fresin 6073 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
11347, 112syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
1148, 9, 111, 11, 113, 20eldv 23662 . 2 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
1158, 9, 39, 11, 47, 19eldv 23662 . . 3 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
116115anbi1d 741 . 2 (𝜑 → ((𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
117110, 114, 1163bitr4d 300 1 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cmin 10266   / cdiv 10684  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  intcnt 20821   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvres  23675
  Copyright terms: Public domain W3C validator