Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icocncflimc Structured version   Visualization version   GIF version

Theorem icocncflimc 40102
Description: Limit at the lower bound, of a continuous function defined on a left closed right open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icocncflimc.a (𝜑𝐴 ∈ ℝ)
icocncflimc.b (𝜑𝐵 ∈ ℝ*)
icocncflimc.altb (𝜑𝐴 < 𝐵)
icocncflimc.f (𝜑𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ))
Assertion
Ref Expression
icocncflimc (𝜑 → (𝐹𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))

Proof of Theorem icocncflimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icocncflimc.f . . 3 (𝜑𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ))
2 icocncflimc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
32rexrd 10089 . . . 4 (𝜑𝐴 ∈ ℝ*)
4 icocncflimc.b . . . 4 (𝜑𝐵 ∈ ℝ*)
52leidd 10594 . . . 4 (𝜑𝐴𝐴)
6 icocncflimc.altb . . . 4 (𝜑𝐴 < 𝐵)
73, 4, 3, 5, 6elicod 12224 . . 3 (𝜑𝐴 ∈ (𝐴[,)𝐵))
81, 7cnlimci 23653 . 2 (𝜑 → (𝐹𝐴) ∈ (𝐹 lim 𝐴))
9 cncfrss 22694 . . . . . . . 8 (𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ) → (𝐴[,)𝐵) ⊆ ℂ)
101, 9syl 17 . . . . . . 7 (𝜑 → (𝐴[,)𝐵) ⊆ ℂ)
11 ssid 3624 . . . . . . 7 ℂ ⊆ ℂ
12 eqid 2622 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 eqid 2622 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
14 eqid 2622 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
1512, 13, 14cncfcn 22712 . . . . . . 7 (((𝐴[,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1610, 11, 15sylancl 694 . . . . . 6 (𝜑 → ((𝐴[,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
171, 16eleqtrd 2703 . . . . 5 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1812cnfldtopon 22586 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1918a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
20 resttopon 20965 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴[,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)))
2119, 10, 20syl2anc 693 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)))
2212cnfldtop 22587 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
23 unicntop 22589 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
2423restid 16094 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
2522, 24ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
2625cnfldtopon 22586 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)
27 cncnp 21084 . . . . . 6 ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)) ∧ ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2821, 26, 27sylancl 694 . . . . 5 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2917, 28mpbid 222 . . . 4 (𝜑 → (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥)))
3029simpld 475 . . 3 (𝜑𝐹:(𝐴[,)𝐵)⟶ℂ)
31 ioossico 12262 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
3231a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵))
33 eqid 2622 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴}))
342recnd 10068 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3523ntrtop 20874 . . . . . . . . 9 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
3622, 35ax-mp 5 . . . . . . . 8 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
37 undif 4049 . . . . . . . . . . 11 ((𝐴[,)𝐵) ⊆ ℂ ↔ ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ)
3810, 37sylib 208 . . . . . . . . . 10 (𝜑 → ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ)
3938eqcomd 2628 . . . . . . . . 9 (𝜑 → ℂ = ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))))
4039fveq2d 6195 . . . . . . . 8 (𝜑 → ((int‘(TopOpen‘ℂfld))‘ℂ) = ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4136, 40syl5eqr 2670 . . . . . . 7 (𝜑 → ℂ = ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4234, 41eleqtrd 2703 . . . . . 6 (𝜑𝐴 ∈ ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4342, 7elind 3798 . . . . 5 (𝜑𝐴 ∈ (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4422a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
45 ssid 3624 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)
4645a1i 11 . . . . . 6 (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵))
4723, 13restntr 20986 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℂ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4844, 10, 46, 47syl3anc 1326 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4943, 48eleqtrrd 2704 . . . 4 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)))
507snssd 4340 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ (𝐴[,)𝐵))
51 ssequn2 3786 . . . . . . . . 9 ({𝐴} ⊆ (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5250, 51sylib 208 . . . . . . . 8 (𝜑 → ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5352eqcomd 2628 . . . . . . 7 (𝜑 → (𝐴[,)𝐵) = ((𝐴[,)𝐵) ∪ {𝐴}))
5453oveq2d 6666 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))
5554fveq2d 6195 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴}))))
56 snunioo1 39738 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
573, 4, 6, 56syl3anc 1326 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5857eqcomd 2628 . . . . 5 (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
5955, 58fveq12d 6197 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
6049, 59eleqtrd 2703 . . 3 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
6130, 32, 10, 12, 33, 60limcres 23650 . 2 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
628, 61eleqtrrd 2704 1 (𝜑 → (𝐹𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cdif 3571  cun 3572  cin 3573  wss 3574  {csn 4177   class class class wbr 4653  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  *cxr 10073   < clt 10074  (,)cioo 12175  [,)cico 12177  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  intcnt 20821   Cn ccn 21028   CnP ccnp 21029  cnccncf 22679   lim climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-cn 21031  df-cnp 21032  df-xms 22125  df-ms 22126  df-cncf 22681  df-limc 23630
This theorem is referenced by:  fourierdlem46  40369
  Copyright terms: Public domain W3C validator