MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres2lem Structured version   Visualization version   GIF version

Theorem dvres2lem 23674
Description: Lemma for dvres2 23676. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
dvres2lem.d (𝜑𝑥(𝑆 D 𝐹)𝑦)
dvres2lem.x (𝜑𝑥𝐵)
Assertion
Ref Expression
dvres2lem (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvres2lem
StepHypRef Expression
1 dvres.t . . . . . . 7 𝑇 = (𝐾t 𝑆)
2 dvres.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
32cnfldtop 22587 . . . . . . . 8 𝐾 ∈ Top
4 dvres.s . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
5 cnex 10017 . . . . . . . . 9 ℂ ∈ V
6 ssexg 4804 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 694 . . . . . . . 8 (𝜑𝑆 ∈ V)
8 resttop 20964 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
93, 7, 8sylancr 695 . . . . . . 7 (𝜑 → (𝐾t 𝑆) ∈ Top)
101, 9syl5eqel 2705 . . . . . 6 (𝜑𝑇 ∈ Top)
11 inss1 3833 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
12 dvres.a . . . . . . . . 9 (𝜑𝐴𝑆)
1311, 12syl5ss 3614 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
142cnfldtopon 22586 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘ℂ)
15 resttopon 20965 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1614, 4, 15sylancr 695 . . . . . . . . . 10 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
171, 16syl5eqel 2705 . . . . . . . . 9 (𝜑𝑇 ∈ (TopOn‘𝑆))
18 toponuni 20719 . . . . . . . . 9 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑆 = 𝑇)
2013, 19sseqtrd 3641 . . . . . . 7 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
21 difssd 3738 . . . . . . 7 (𝜑 → ( 𝑇𝐵) ⊆ 𝑇)
2220, 21unssd 3789 . . . . . 6 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇)
23 inundif 4046 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
2412, 19sseqtrd 3641 . . . . . . . 8 (𝜑𝐴 𝑇)
25 ssdif 3745 . . . . . . . 8 (𝐴 𝑇 → (𝐴𝐵) ⊆ ( 𝑇𝐵))
26 unss2 3784 . . . . . . . 8 ((𝐴𝐵) ⊆ ( 𝑇𝐵) → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2724, 25, 263syl 18 . . . . . . 7 (𝜑 → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2823, 27syl5eqssr 3650 . . . . . 6 (𝜑𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
29 eqid 2622 . . . . . . 7 𝑇 = 𝑇
3029ntrss 20859 . . . . . 6 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵))) → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
3110, 22, 28, 30syl3anc 1326 . . . . 5 (𝜑 → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
32 dvres2lem.d . . . . . . 7 (𝜑𝑥(𝑆 D 𝐹)𝑦)
33 dvres.g . . . . . . . 8 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
34 dvres.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
351, 2, 33, 4, 34, 12eldv 23662 . . . . . . 7 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
3632, 35mpbid 222 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)))
3736simpld 475 . . . . 5 (𝜑𝑥 ∈ ((int‘𝑇)‘𝐴))
3831, 37sseldd 3604 . . . 4 (𝜑𝑥 ∈ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
39 dvres2lem.x . . . 4 (𝜑𝑥𝐵)
4038, 39elind 3798 . . 3 (𝜑𝑥 ∈ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
41 dvres.b . . . . . 6 (𝜑𝐵𝑆)
4241, 19sseqtrd 3641 . . . . 5 (𝜑𝐵 𝑇)
43 inss2 3834 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
4443a1i 11 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
45 eqid 2622 . . . . . 6 (𝑇t 𝐵) = (𝑇t 𝐵)
4629, 45restntr 20986 . . . . 5 ((𝑇 ∈ Top ∧ 𝐵 𝑇 ∧ (𝐴𝐵) ⊆ 𝐵) → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
4710, 42, 44, 46syl3anc 1326 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
481oveq1i 6660 . . . . . . 7 (𝑇t 𝐵) = ((𝐾t 𝑆) ↾t 𝐵)
493a1i 11 . . . . . . . 8 (𝜑𝐾 ∈ Top)
50 restabs 20969 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐵𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5149, 41, 7, 50syl3anc 1326 . . . . . . 7 (𝜑 → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5248, 51syl5eq 2668 . . . . . 6 (𝜑 → (𝑇t 𝐵) = (𝐾t 𝐵))
5352fveq2d 6195 . . . . 5 (𝜑 → (int‘(𝑇t 𝐵)) = (int‘(𝐾t 𝐵)))
5453fveq1d 6193 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5547, 54eqtr3d 2658 . . 3 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5640, 55eleqtrd 2703 . 2 (𝜑𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
57 limcresi 23649 . . . 4 (𝐺 lim 𝑥) ⊆ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥)
5836simprd 479 . . . 4 (𝜑𝑦 ∈ (𝐺 lim 𝑥))
5957, 58sseldi 3601 . . 3 (𝜑𝑦 ∈ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
60 difss 3737 . . . . . . . . 9 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
6160, 43sstri 3612 . . . . . . . 8 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
6261sseli 3599 . . . . . . 7 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) → 𝑧𝐵)
63 fvres 6207 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
64 fvres 6207 . . . . . . . . . 10 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
6539, 64syl 17 . . . . . . . . 9 (𝜑 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
6663, 65oveqan12rd 6670 . . . . . . . 8 ((𝜑𝑧𝐵) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
6766oveq1d 6665 . . . . . . 7 ((𝜑𝑧𝐵) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6862, 67sylan2 491 . . . . . 6 ((𝜑𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6968mpteq2dva 4744 . . . . 5 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
7033reseq1i 5392 . . . . . 6 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
71 ssdif 3745 . . . . . . 7 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
72 resmpt 5449 . . . . . . 7 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
7311, 71, 72mp2b 10 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7470, 73eqtri 2644 . . . . 5 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7569, 74syl6eqr 2674 . . . 4 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
7675oveq1d 6665 . . 3 (𝜑 → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
7759, 76eleqtrrd 2704 . 2 (𝜑𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))
78 eqid 2622 . . 3 (𝐾t 𝐵) = (𝐾t 𝐵)
79 eqid 2622 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
8041, 4sstrd 3613 . . 3 (𝜑𝐵 ⊆ ℂ)
81 fresin 6073 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8234, 81syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8378, 2, 79, 80, 82, 44eldv 23662 . 2 (𝜑 → (𝑥(𝐵 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
8456, 77, 83mpbir2and 957 1 (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cmin 10266   / cdiv 10684  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  intcnt 20821   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvres2  23676
  Copyright terms: Public domain W3C validator