| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restntr | Structured version Visualization version Unicode version | ||
| Description: An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 20985 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| restcls.1 |
|
| restcls.2 |
|
| Ref | Expression |
|---|---|
| restntr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls.2 |
. . . . . . 7
| |
| 2 | 1 | fveq2i 6194 |
. . . . . 6
|
| 3 | 2 | fveq1i 6192 |
. . . . 5
|
| 4 | restcls.1 |
. . . . . . . . . 10
| |
| 5 | 4 | topopn 20711 |
. . . . . . . . 9
|
| 6 | ssexg 4804 |
. . . . . . . . . 10
| |
| 7 | 6 | ancoms 469 |
. . . . . . . . 9
|
| 8 | 5, 7 | sylan 488 |
. . . . . . . 8
|
| 9 | resttop 20964 |
. . . . . . . 8
| |
| 10 | 8, 9 | syldan 487 |
. . . . . . 7
|
| 11 | 10 | 3adant3 1081 |
. . . . . 6
|
| 12 | 4 | restuni 20966 |
. . . . . . . 8
|
| 13 | 12 | sseq2d 3633 |
. . . . . . 7
|
| 14 | 13 | biimp3a 1432 |
. . . . . 6
|
| 15 | eqid 2622 |
. . . . . . 7
| |
| 16 | 15 | ntropn 20853 |
. . . . . 6
|
| 17 | 11, 14, 16 | syl2anc 693 |
. . . . 5
|
| 18 | 3, 17 | syl5eqel 2705 |
. . . 4
|
| 19 | simp1 1061 |
. . . . 5
| |
| 20 | uniexg 6955 |
. . . . . . . . 9
| |
| 21 | 4, 20 | syl5eqel 2705 |
. . . . . . . 8
|
| 22 | ssexg 4804 |
. . . . . . . 8
| |
| 23 | 21, 22 | sylan2 491 |
. . . . . . 7
|
| 24 | 23 | ancoms 469 |
. . . . . 6
|
| 25 | 24 | 3adant3 1081 |
. . . . 5
|
| 26 | elrest 16088 |
. . . . 5
| |
| 27 | 19, 25, 26 | syl2anc 693 |
. . . 4
|
| 28 | 18, 27 | mpbid 222 |
. . 3
|
| 29 | 4 | eltopss 20712 |
. . . . . . . . . . 11
|
| 30 | 29 | sseld 3602 |
. . . . . . . . . 10
|
| 31 | 30 | adantrr 753 |
. . . . . . . . 9
|
| 32 | 31 | 3ad2antl1 1223 |
. . . . . . . 8
|
| 33 | eldif 3584 |
. . . . . . . . . 10
| |
| 34 | 33 | simplbi2 655 |
. . . . . . . . 9
|
| 35 | 34 | orrd 393 |
. . . . . . . 8
|
| 36 | 32, 35 | syl6 35 |
. . . . . . 7
|
| 37 | elin 3796 |
. . . . . . . . . . 11
| |
| 38 | eleq2 2690 |
. . . . . . . . . . . . 13
| |
| 39 | elun1 3780 |
. . . . . . . . . . . . 13
| |
| 40 | 38, 39 | syl6bir 244 |
. . . . . . . . . . . 12
|
| 41 | 40 | ad2antll 765 |
. . . . . . . . . . 11
|
| 42 | 37, 41 | syl5bir 233 |
. . . . . . . . . 10
|
| 43 | 42 | expdimp 453 |
. . . . . . . . 9
|
| 44 | elun2 3781 |
. . . . . . . . . 10
| |
| 45 | 44 | a1i 11 |
. . . . . . . . 9
|
| 46 | 43, 45 | jaod 395 |
. . . . . . . 8
|
| 47 | 46 | ex 450 |
. . . . . . 7
|
| 48 | 36, 47 | mpdd 43 |
. . . . . 6
|
| 49 | 48 | ssrdv 3609 |
. . . . 5
|
| 50 | 11 | adantr 481 |
. . . . . . . 8
|
| 51 | 1, 50 | syl5eqel 2705 |
. . . . . . 7
|
| 52 | 14 | adantr 481 |
. . . . . . 7
|
| 53 | 1 | unieqi 4445 |
. . . . . . . . 9
|
| 54 | 53 | eqcomi 2631 |
. . . . . . . 8
|
| 55 | 54 | ntrss2 20861 |
. . . . . . 7
|
| 56 | 51, 52, 55 | syl2anc 693 |
. . . . . 6
|
| 57 | unss1 3782 |
. . . . . 6
| |
| 58 | 56, 57 | syl 17 |
. . . . 5
|
| 59 | 49, 58 | sstrd 3613 |
. . . 4
|
| 60 | simpl1 1064 |
. . . . . . . . . 10
| |
| 61 | sstr 3611 |
. . . . . . . . . . . . . 14
| |
| 62 | 61 | ancoms 469 |
. . . . . . . . . . . . 13
|
| 63 | 62 | 3adant1 1079 |
. . . . . . . . . . . 12
|
| 64 | 63 | adantr 481 |
. . . . . . . . . . 11
|
| 65 | difss 3737 |
. . . . . . . . . . 11
| |
| 66 | unss 3787 |
. . . . . . . . . . 11
| |
| 67 | 64, 65, 66 | sylanblc 696 |
. . . . . . . . . 10
|
| 68 | simprl 794 |
. . . . . . . . . 10
| |
| 69 | simprr 796 |
. . . . . . . . . 10
| |
| 70 | 4 | ssntr 20862 |
. . . . . . . . . 10
|
| 71 | 60, 67, 68, 69, 70 | syl22anc 1327 |
. . . . . . . . 9
|
| 72 | ssrin 3838 |
. . . . . . . . 9
| |
| 73 | 71, 72 | syl 17 |
. . . . . . . 8
|
| 74 | sseq1 3626 |
. . . . . . . 8
| |
| 75 | 73, 74 | syl5ibrcom 237 |
. . . . . . 7
|
| 76 | 75 | expr 643 |
. . . . . 6
|
| 77 | 76 | com23 86 |
. . . . 5
|
| 78 | 77 | impr 649 |
. . . 4
|
| 79 | 59, 78 | mpd 15 |
. . 3
|
| 80 | 28, 79 | rexlimddv 3035 |
. 2
|
| 81 | 1, 11 | syl5eqel 2705 |
. . 3
|
| 82 | 8 | 3adant3 1081 |
. . . . 5
|
| 83 | 63, 65, 66 | sylanblc 696 |
. . . . . 6
|
| 84 | 4 | ntropn 20853 |
. . . . . 6
|
| 85 | 19, 83, 84 | syl2anc 693 |
. . . . 5
|
| 86 | elrestr 16089 |
. . . . 5
| |
| 87 | 19, 82, 85, 86 | syl3anc 1326 |
. . . 4
|
| 88 | 87, 1 | syl6eleqr 2712 |
. . 3
|
| 89 | 4 | ntrss2 20861 |
. . . . . 6
|
| 90 | 19, 83, 89 | syl2anc 693 |
. . . . 5
|
| 91 | ssrin 3838 |
. . . . 5
| |
| 92 | 90, 91 | syl 17 |
. . . 4
|
| 93 | elin 3796 |
. . . . . . 7
| |
| 94 | elun 3753 |
. . . . . . . . 9
| |
| 95 | orcom 402 |
. . . . . . . . . 10
| |
| 96 | df-or 385 |
. . . . . . . . . 10
| |
| 97 | 95, 96 | bitri 264 |
. . . . . . . . 9
|
| 98 | 94, 97 | bitri 264 |
. . . . . . . 8
|
| 99 | 98 | anbi1i 731 |
. . . . . . 7
|
| 100 | 93, 99 | bitri 264 |
. . . . . 6
|
| 101 | elndif 3734 |
. . . . . . . . 9
| |
| 102 | pm2.27 42 |
. . . . . . . . 9
| |
| 103 | 101, 102 | syl 17 |
. . . . . . . 8
|
| 104 | 103 | impcom 446 |
. . . . . . 7
|
| 105 | 104 | a1i 11 |
. . . . . 6
|
| 106 | 100, 105 | syl5bi 232 |
. . . . 5
|
| 107 | 106 | ssrdv 3609 |
. . . 4
|
| 108 | 92, 107 | sstrd 3613 |
. . 3
|
| 109 | 54 | ssntr 20862 |
. . 3
|
| 110 | 81, 14, 88, 108, 109 | syl22anc 1327 |
. 2
|
| 111 | 80, 110 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-en 7956 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-ntr 20824 |
| This theorem is referenced by: llycmpkgen2 21353 dvreslem 23673 dvres2lem 23674 dvaddbr 23701 dvmulbr 23702 dvcnvrelem2 23781 limciccioolb 39853 limcicciooub 39869 ioccncflimc 40098 icocncflimc 40102 cncfiooicclem1 40106 fourierdlem62 40385 |
| Copyright terms: Public domain | W3C validator |