MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restntr Structured version   Visualization version   Unicode version

Theorem restntr 20986
Description: An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 20985 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restntr  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  =  ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
) )

Proof of Theorem restntr
Dummy variables  x  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . . . . 7  |-  K  =  ( Jt  Y )
21fveq2i 6194 . . . . . 6  |-  ( int `  K )  =  ( int `  ( Jt  Y ) )
32fveq1i 6192 . . . . 5  |-  ( ( int `  K ) `
 S )  =  ( ( int `  ( Jt  Y ) ) `  S )
4 restcls.1 . . . . . . . . . 10  |-  X  = 
U. J
54topopn 20711 . . . . . . . . 9  |-  ( J  e.  Top  ->  X  e.  J )
6 ssexg 4804 . . . . . . . . . 10  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
76ancoms 469 . . . . . . . . 9  |-  ( ( X  e.  J  /\  Y  C_  X )  ->  Y  e.  _V )
85, 7sylan 488 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
9 resttop 20964 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( Jt  Y )  e.  Top )
108, 9syldan 487 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Jt  Y )  e.  Top )
11103adant3 1081 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( Jt  Y )  e.  Top )
124restuni 20966 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  =  U. ( Jt  Y ) )
1312sseq2d 3633 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( S  C_  Y  <->  S 
C_  U. ( Jt  Y ) ) )
1413biimp3a 1432 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_ 
U. ( Jt  Y ) )
15 eqid 2622 . . . . . . 7  |-  U. ( Jt  Y )  =  U. ( Jt  Y )
1615ntropn 20853 . . . . . 6  |-  ( ( ( Jt  Y )  e.  Top  /\  S  C_  U. ( Jt  Y ) )  -> 
( ( int `  ( Jt  Y ) ) `  S )  e.  ( Jt  Y ) )
1711, 14, 16syl2anc 693 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  ( Jt  Y ) ) `  S )  e.  ( Jt  Y ) )
183, 17syl5eqel 2705 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  e.  ( Jt  Y ) )
19 simp1 1061 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  Top )
20 uniexg 6955 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. J  e.  _V )
214, 20syl5eqel 2705 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  _V )
22 ssexg 4804 . . . . . . . 8  |-  ( ( Y  C_  X  /\  X  e.  _V )  ->  Y  e.  _V )
2321, 22sylan2 491 . . . . . . 7  |-  ( ( Y  C_  X  /\  J  e.  Top )  ->  Y  e.  _V )
2423ancoms 469 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
25243adant3 1081 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  e.  _V )
26 elrest 16088 . . . . 5  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( ( ( int `  K ) `  S
)  e.  ( Jt  Y )  <->  E. o  e.  J  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )
2719, 25, 26syl2anc 693 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  K
) `  S )  e.  ( Jt  Y )  <->  E. o  e.  J  ( ( int `  K ) `  S )  =  ( o  i^i  Y ) ) )
2818, 27mpbid 222 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. o  e.  J  ( ( int `  K ) `  S )  =  ( o  i^i  Y ) )
294eltopss 20712 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  o  C_  X )
3029sseld 3602 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( x  e.  o  ->  x  e.  X
) )
3130adantrr 753 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  x  e.  X ) )
32313ad2antl1 1223 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  x  e.  X ) )
33 eldif 3584 . . . . . . . . . 10  |-  ( x  e.  ( X  \  Y )  <->  ( x  e.  X  /\  -.  x  e.  Y ) )
3433simplbi2 655 . . . . . . . . 9  |-  ( x  e.  X  ->  ( -.  x  e.  Y  ->  x  e.  ( X 
\  Y ) ) )
3534orrd 393 . . . . . . . 8  |-  ( x  e.  X  ->  (
x  e.  Y  \/  x  e.  ( X  \  Y ) ) )
3632, 35syl6 35 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  ( x  e.  Y  \/  x  e.  ( X  \  Y
) ) ) )
37 elin 3796 . . . . . . . . . . 11  |-  ( x  e.  ( o  i^i 
Y )  <->  ( x  e.  o  /\  x  e.  Y ) )
38 eleq2 2690 . . . . . . . . . . . . 13  |-  ( ( ( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
x  e.  ( ( int `  K ) `
 S )  <->  x  e.  ( o  i^i  Y
) ) )
39 elun1 3780 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( int `  K ) `  S
)  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) )
4038, 39syl6bir 244 . . . . . . . . . . . 12  |-  ( ( ( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
x  e.  ( o  i^i  Y )  ->  x  e.  ( (
( int `  K
) `  S )  u.  ( X  \  Y
) ) ) )
4140ad2antll 765 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  ( o  i^i  Y
)  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4237, 41syl5bir 233 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( x  e.  o  /\  x  e.  Y )  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4342expdimp 453 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K ) `
 S )  =  ( o  i^i  Y
) ) )  /\  x  e.  o )  ->  ( x  e.  Y  ->  x  e.  ( ( ( int `  K
) `  S )  u.  ( X  \  Y
) ) ) )
44 elun2 3781 . . . . . . . . . 10  |-  ( x  e.  ( X  \  Y )  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) )
4544a1i 11 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K ) `
 S )  =  ( o  i^i  Y
) ) )  /\  x  e.  o )  ->  ( x  e.  ( X  \  Y )  ->  x  e.  ( ( ( int `  K
) `  S )  u.  ( X  \  Y
) ) ) )
4643, 45jaod 395 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K ) `
 S )  =  ( o  i^i  Y
) ) )  /\  x  e.  o )  ->  ( ( x  e.  Y  \/  x  e.  ( X  \  Y
) )  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4746ex 450 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  ( (
x  e.  Y  \/  x  e.  ( X  \  Y ) )  ->  x  e.  ( (
( int `  K
) `  S )  u.  ( X  \  Y
) ) ) ) )
4836, 47mpdd 43 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( x  e.  o  ->  x  e.  ( ( ( int `  K ) `  S
)  u.  ( X 
\  Y ) ) ) )
4948ssrdv 3609 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  o  C_  (
( ( int `  K
) `  S )  u.  ( X  \  Y
) ) )
5011adantr 481 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( Jt  Y )  e.  Top )
511, 50syl5eqel 2705 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  K  e.  Top )
5214adantr 481 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  S  C_  U. ( Jt  Y ) )
531unieqi 4445 . . . . . . . . 9  |-  U. K  =  U. ( Jt  Y )
5453eqcomi 2631 . . . . . . . 8  |-  U. ( Jt  Y )  =  U. K
5554ntrss2 20861 . . . . . . 7  |-  ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  ->  (
( int `  K
) `  S )  C_  S )
5651, 52, 55syl2anc 693 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( int `  K ) `  S
)  C_  S )
57 unss1 3782 . . . . . 6  |-  ( ( ( int `  K
) `  S )  C_  S  ->  ( (
( int `  K
) `  S )  u.  ( X  \  Y
) )  C_  ( S  u.  ( X  \  Y ) ) )
5856, 57syl 17 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( ( int `  K ) `
 S )  u.  ( X  \  Y
) )  C_  ( S  u.  ( X  \  Y ) ) )
5949, 58sstrd 3613 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  o  C_  ( S  u.  ( X  \  Y ) ) )
60 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  J  e.  Top )
61 sstr 3611 . . . . . . . . . . . . . 14  |-  ( ( S  C_  Y  /\  Y  C_  X )  ->  S  C_  X )
6261ancoms 469 . . . . . . . . . . . . 13  |-  ( ( Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
63623adant1 1079 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
6463adantr 481 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  S  C_  X
)
65 difss 3737 . . . . . . . . . . 11  |-  ( X 
\  Y )  C_  X
66 unss 3787 . . . . . . . . . . 11  |-  ( ( S  C_  X  /\  ( X  \  Y ) 
C_  X )  <->  ( S  u.  ( X  \  Y
) )  C_  X
)
6764, 65, 66sylanblc 696 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( S  u.  ( X  \  Y
) )  C_  X
)
68 simprl 794 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  e.  J )
69 simprr 796 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  C_  ( S  u.  ( X  \  Y ) ) )
704ssntr 20862 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  ( S  u.  ( X  \  Y ) ) 
C_  X )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  C_  ( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) ) )
7160, 67, 68, 69, 70syl22anc 1327 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  o  C_  ( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) ) )
72 ssrin 3838 . . . . . . . . 9  |-  ( o 
C_  ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  ->  ( o  i^i 
Y )  C_  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) )
7371, 72syl 17 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( o  i^i  Y )  C_  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) )
74 sseq1 3626 . . . . . . . 8  |-  ( ( ( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
( ( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y )  <->  ( o  i^i  Y )  C_  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) ) )
7573, 74syl5ibrcom 237 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  o  C_  ( S  u.  ( X  \  Y ) ) ) )  ->  ( (
( int `  K
) `  S )  =  ( o  i^i 
Y )  ->  (
( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) ) )
7675expr 643 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  o  e.  J )  ->  ( o  C_  ( S  u.  ( X  \  Y ) )  -> 
( ( ( int `  K ) `  S
)  =  ( o  i^i  Y )  -> 
( ( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) ) ) )
7776com23 86 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  o  e.  J )  ->  ( ( ( int `  K ) `  S
)  =  ( o  i^i  Y )  -> 
( o  C_  ( S  u.  ( X  \  Y ) )  -> 
( ( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) ) ) )
7877impr 649 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( o  C_  ( S  u.  ( X  \  Y ) )  ->  ( ( int `  K ) `  S
)  C_  ( (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) ) )
7959, 78mpd 15 . . 3  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( o  e.  J  /\  ( ( int `  K
) `  S )  =  ( o  i^i 
Y ) ) )  ->  ( ( int `  K ) `  S
)  C_  ( (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y ) )
8028, 79rexlimddv 3035 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  C_  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y ) )
811, 11syl5eqel 2705 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  Top )
8283adant3 1081 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  e.  _V )
8363, 65, 66sylanblc 696 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( S  u.  ( X  \  Y ) )  C_  X )
844ntropn 20853 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  u.  ( X  \  Y ) ) 
C_  X )  -> 
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  e.  J )
8519, 83, 84syl2anc 693 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  e.  J )
86 elrestr 16089 . . . . 5  |-  ( ( J  e.  Top  /\  Y  e.  _V  /\  (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  e.  J )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  e.  ( Jt  Y ) )
8719, 82, 85, 86syl3anc 1326 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  e.  ( Jt  Y ) )
8887, 1syl6eleqr 2712 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  e.  K
)
894ntrss2 20861 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  u.  ( X  \  Y ) ) 
C_  X )  -> 
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  C_  ( S  u.  ( X  \  Y ) ) )
9019, 83, 89syl2anc 693 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  C_  ( S  u.  ( X  \  Y ) ) )
91 ssrin 3838 . . . . 5  |-  ( ( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  C_  ( S  u.  ( X  \  Y ) )  ->  ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
)  C_  ( ( S  u.  ( X  \  Y ) )  i^i 
Y ) )
9290, 91syl 17 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  C_  (
( S  u.  ( X  \  Y ) )  i^i  Y ) )
93 elin 3796 . . . . . . 7  |-  ( x  e.  ( ( S  u.  ( X  \  Y ) )  i^i 
Y )  <->  ( x  e.  ( S  u.  ( X  \  Y ) )  /\  x  e.  Y
) )
94 elun 3753 . . . . . . . . 9  |-  ( x  e.  ( S  u.  ( X  \  Y ) )  <->  ( x  e.  S  \/  x  e.  ( X  \  Y
) ) )
95 orcom 402 . . . . . . . . . 10  |-  ( ( x  e.  S  \/  x  e.  ( X  \  Y ) )  <->  ( x  e.  ( X  \  Y
)  \/  x  e.  S ) )
96 df-or 385 . . . . . . . . . 10  |-  ( ( x  e.  ( X 
\  Y )  \/  x  e.  S )  <-> 
( -.  x  e.  ( X  \  Y
)  ->  x  e.  S ) )
9795, 96bitri 264 . . . . . . . . 9  |-  ( ( x  e.  S  \/  x  e.  ( X  \  Y ) )  <->  ( -.  x  e.  ( X  \  Y )  ->  x  e.  S ) )
9894, 97bitri 264 . . . . . . . 8  |-  ( x  e.  ( S  u.  ( X  \  Y ) )  <->  ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S ) )
9998anbi1i 731 . . . . . . 7  |-  ( ( x  e.  ( S  u.  ( X  \  Y ) )  /\  x  e.  Y )  <->  ( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  /\  x  e.  Y ) )
10093, 99bitri 264 . . . . . 6  |-  ( x  e.  ( ( S  u.  ( X  \  Y ) )  i^i 
Y )  <->  ( ( -.  x  e.  ( X  \  Y )  ->  x  e.  S )  /\  x  e.  Y
) )
101 elndif 3734 . . . . . . . . 9  |-  ( x  e.  Y  ->  -.  x  e.  ( X  \  Y ) )
102 pm2.27 42 . . . . . . . . 9  |-  ( -.  x  e.  ( X 
\  Y )  -> 
( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  ->  x  e.  S ) )
103101, 102syl 17 . . . . . . . 8  |-  ( x  e.  Y  ->  (
( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  ->  x  e.  S ) )
104103impcom 446 . . . . . . 7  |-  ( ( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  /\  x  e.  Y )  ->  x  e.  S )
105104a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( -.  x  e.  ( X  \  Y
)  ->  x  e.  S )  /\  x  e.  Y )  ->  x  e.  S ) )
106100, 105syl5bi 232 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
x  e.  ( ( S  u.  ( X 
\  Y ) )  i^i  Y )  ->  x  e.  S )
)
107106ssrdv 3609 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( S  u.  ( X  \  Y ) )  i^i  Y )  C_  S )
10892, 107sstrd 3613 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  C_  S
)
10954ssntr 20862 . . 3  |-  ( ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  /\  ( ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
)  e.  K  /\  ( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y )  C_  S ) )  -> 
( ( ( int `  J ) `  ( S  u.  ( X  \  Y ) ) )  i^i  Y )  C_  ( ( int `  K
) `  S )
)
11081, 14, 88, 108, 109syl22anc 1327 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( int `  J
) `  ( S  u.  ( X  \  Y
) ) )  i^i 
Y )  C_  (
( int `  K
) `  S )
)
11180, 110eqssd 3620 1  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( int `  K
) `  S )  =  ( ( ( int `  J ) `
 ( S  u.  ( X  \  Y ) ) )  i^i  Y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   U.cuni 4436   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698   intcnt 20821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824
This theorem is referenced by:  llycmpkgen2  21353  dvreslem  23673  dvres2lem  23674  dvaddbr  23701  dvmulbr  23702  dvcnvrelem2  23781  limciccioolb  39853  limcicciooub  39869  ioccncflimc  40098  icocncflimc  40102  cncfiooicclem1  40106  fourierdlem62  40385
  Copyright terms: Public domain W3C validator