MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulbr Structured version   Visualization version   GIF version

Theorem dvmulbr 23702
Description: The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmul 23704. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvadd.g (𝜑𝐺:𝑌⟶ℂ)
dvadd.y (𝜑𝑌𝑆)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.k (𝜑𝐾𝑉)
dvadd.l (𝜑𝐿𝑉)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvadd.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvmulbr (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))

Proof of Theorem dvmulbr
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . . . 6 (𝜑𝐶(𝑆 D 𝐹)𝐾)
2 eqid 2622 . . . . . . 7 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvadd.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
4 eqid 2622 . . . . . . 7 (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
6 dvadd.f . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
7 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldv 23662 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 222 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 475 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
11 dvadd.bg . . . . . 6 (𝜑𝐶(𝑆 D 𝐺)𝐿)
12 eqid 2622 . . . . . . 7 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
13 dvadd.g . . . . . . 7 (𝜑𝐺:𝑌⟶ℂ)
14 dvadd.y . . . . . . 7 (𝜑𝑌𝑆)
152, 3, 12, 5, 13, 14eldv 23662 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
1611, 15mpbid 222 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1716simpld 475 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌))
1810, 17elind 3798 . . 3 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
193cnfldtopon 22586 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
20 resttopon 20965 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
2119, 5, 20sylancr 695 . . . . 5 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
22 topontop 20718 . . . . 5 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
2321, 22syl 17 . . . 4 (𝜑 → (𝐽t 𝑆) ∈ Top)
24 toponuni 20719 . . . . . 6 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
2521, 24syl 17 . . . . 5 (𝜑𝑆 = (𝐽t 𝑆))
267, 25sseqtrd 3641 . . . 4 (𝜑𝑋 (𝐽t 𝑆))
2714, 25sseqtrd 3641 . . . 4 (𝜑𝑌 (𝐽t 𝑆))
28 eqid 2622 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
2928ntrin 20865 . . . 4 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ 𝑌 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3023, 26, 27, 29syl3anc 1326 . . 3 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3118, 30eleqtrrd 2704 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)))
326adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
33 inss1 3833 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑋
34 eldifi 3732 . . . . . . . . . 10 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧 ∈ (𝑋𝑌))
3534adantl 482 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋𝑌))
3633, 35sseldi 3601 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝑋)
3732, 36ffvelrnd 6360 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝑧) ∈ ℂ)
385, 6, 7dvbss 23665 . . . . . . . . . 10 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
39 reldv 23634 . . . . . . . . . . 11 Rel (𝑆 D 𝐹)
40 releldm 5358 . . . . . . . . . . 11 ((Rel (𝑆 D 𝐹) ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐶 ∈ dom (𝑆 D 𝐹))
4139, 1, 40sylancr 695 . . . . . . . . . 10 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
4238, 41sseldd 3604 . . . . . . . . 9 (𝜑𝐶𝑋)
436, 42ffvelrnd 6360 . . . . . . . 8 (𝜑 → (𝐹𝐶) ∈ ℂ)
4443adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
4537, 44subcld 10392 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
467, 5sstrd 3613 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
4746adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑋 ⊆ ℂ)
4847, 36sseldd 3604 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ ℂ)
4946, 42sseldd 3604 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
5049adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ)
5148, 50subcld 10392 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
52 eldifsni 4320 . . . . . . . 8 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧𝐶)
5352adantl 482 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝐶)
5448, 50, 53subne0d 10401 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ≠ 0)
5545, 51, 54divcld 10801 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
5613adantr 481 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐺:𝑌⟶ℂ)
57 inss2 3834 . . . . . . 7 (𝑋𝑌) ⊆ 𝑌
5857, 35sseldi 3601 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝑌)
5956, 58ffvelrnd 6360 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝑧) ∈ ℂ)
6055, 59mulcld 10060 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) ∈ ℂ)
61 ssdif 3745 . . . . . . . 8 ((𝑋𝑌) ⊆ 𝑌 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
6257, 61mp1i 13 . . . . . . 7 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
6362sselda 3603 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑌 ∖ {𝐶}))
6414, 5sstrd 3613 . . . . . . 7 (𝜑𝑌 ⊆ ℂ)
655, 13, 14dvbss 23665 . . . . . . . 8 (𝜑 → dom (𝑆 D 𝐺) ⊆ 𝑌)
66 reldv 23634 . . . . . . . . 9 Rel (𝑆 D 𝐺)
67 releldm 5358 . . . . . . . . 9 ((Rel (𝑆 D 𝐺) ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑆 D 𝐺))
6866, 11, 67sylancr 695 . . . . . . . 8 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
6965, 68sseldd 3604 . . . . . . 7 (𝜑𝐶𝑌)
7013, 64, 69dvlem 23660 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
7163, 70syldan 487 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
7271, 44mulcld 10060 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)) ∈ ℂ)
73 ssid 3624 . . . . 5 ℂ ⊆ ℂ
7473a1i 11 . . . 4 (𝜑 → ℂ ⊆ ℂ)
75 txtopon 21394 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
7619, 19, 75mp2an 708 . . . . . 6 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
7776toponunii 20721 . . . . . . 7 (ℂ × ℂ) = (𝐽 ×t 𝐽)
7877restid 16094 . . . . . 6 ((𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)) → ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ)) = (𝐽 ×t 𝐽))
7976, 78ax-mp 5 . . . . 5 ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ)) = (𝐽 ×t 𝐽)
8079eqcomi 2631 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
819simprd 479 . . . . . 6 (𝜑𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
826, 46, 42dvlem 23660 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
8382, 4fmptd 6385 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
84 ssdif 3745 . . . . . . . . 9 ((𝑋𝑌) ⊆ 𝑋 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
8533, 84mp1i 13 . . . . . . . 8 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
8646ssdifssd 3748 . . . . . . . 8 (𝜑 → (𝑋 ∖ {𝐶}) ⊆ ℂ)
87 eqid 2622 . . . . . . . 8 (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))
8833, 7syl5ss 3614 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋𝑌) ⊆ 𝑆)
8988, 25sseqtrd 3641 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝑌) ⊆ (𝐽t 𝑆))
90 difssd 3738 . . . . . . . . . . . . . 14 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑋) ⊆ (𝐽t 𝑆))
9189, 90unssd 3789 . . . . . . . . . . . . 13 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆))
92 ssun1 3776 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))
9392a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)))
9428ntrss 20859 . . . . . . . . . . . . 13 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
9523, 91, 93, 94syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
9695, 31sseldd 3604 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
9796, 42elind 3798 . . . . . . . . . 10 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
9833a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ 𝑋)
99 eqid 2622 . . . . . . . . . . . . 13 ((𝐽t 𝑆) ↾t 𝑋) = ((𝐽t 𝑆) ↾t 𝑋)
10028, 99restntr 20986 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑋) → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
10123, 26, 98, 100syl3anc 1326 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
1023cnfldtop 22587 . . . . . . . . . . . . . . 15 𝐽 ∈ Top
103102a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Top)
104 cnex 10017 . . . . . . . . . . . . . . 15 ℂ ∈ V
105 ssexg 4804 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1065, 104, 105sylancl 694 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
107 restabs 20969 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑋𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
108103, 7, 106, 107syl3anc 1326 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
109108fveq2d 6195 . . . . . . . . . . . 12 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑋)) = (int‘(𝐽t 𝑋)))
110109fveq1d 6193 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
111101, 110eqtr3d 2658 . . . . . . . . . 10 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
11297, 111eleqtrd 2703 . . . . . . . . 9 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
113 undif1 4043 . . . . . . . . . . . . 13 ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = (𝑋 ∪ {𝐶})
11442snssd 4340 . . . . . . . . . . . . . 14 (𝜑 → {𝐶} ⊆ 𝑋)
115 ssequn2 3786 . . . . . . . . . . . . . 14 ({𝐶} ⊆ 𝑋 ↔ (𝑋 ∪ {𝐶}) = 𝑋)
116114, 115sylib 208 . . . . . . . . . . . . 13 (𝜑 → (𝑋 ∪ {𝐶}) = 𝑋)
117113, 116syl5eq 2668 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = 𝑋)
118117oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑋))
119118fveq2d 6195 . . . . . . . . . 10 (𝜑 → (int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑋)))
120 undif1 4043 . . . . . . . . . . 11 (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = ((𝑋𝑌) ∪ {𝐶})
12142, 69elind 3798 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (𝑋𝑌))
122121snssd 4340 . . . . . . . . . . . 12 (𝜑 → {𝐶} ⊆ (𝑋𝑌))
123 ssequn2 3786 . . . . . . . . . . . 12 ({𝐶} ⊆ (𝑋𝑌) ↔ ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
124122, 123sylib 208 . . . . . . . . . . 11 (𝜑 → ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
125120, 124syl5eq 2668 . . . . . . . . . 10 (𝜑 → (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = (𝑋𝑌))
126119, 125fveq12d 6197 . . . . . . . . 9 (𝜑 → ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
127112, 126eleqtrrd 2704 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
12883, 85, 86, 3, 87, 127limcres 23650 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
12985resmptd 5452 . . . . . . . 8 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))))
130129oveq1d 6665 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
131128, 130eqtr3d 2658 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
13281, 131eleqtrd 2703 . . . . 5 (𝜑𝐾 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
133 eqid 2622 . . . . . . . . . 10 (𝐽t 𝑌) = (𝐽t 𝑌)
134133, 3dvcnp2 23683 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌𝑆) ∧ 𝐶 ∈ dom (𝑆 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
1355, 13, 14, 68, 134syl31anc 1329 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
1363, 133cnplimc 23651 . . . . . . . . 9 ((𝑌 ⊆ ℂ ∧ 𝐶𝑌) → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
13764, 69, 136syl2anc 693 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
138135, 137mpbid 222 . . . . . . 7 (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
139138simprd 479 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
140 difss 3737 . . . . . . . . . 10 ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋𝑌)
141140, 57sstri 3612 . . . . . . . . 9 ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑌
142141a1i 11 . . . . . . . 8 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑌)
143 eqid 2622 . . . . . . . 8 (𝐽t (𝑌 ∪ {𝐶})) = (𝐽t (𝑌 ∪ {𝐶}))
144 difssd 3738 . . . . . . . . . . . . . 14 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑌) ⊆ (𝐽t 𝑆))
14589, 144unssd 3789 . . . . . . . . . . . . 13 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆))
146 ssun1 3776 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))
147146a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)))
14828ntrss 20859 . . . . . . . . . . . . 13 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
14923, 145, 147, 148syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
150149, 31sseldd 3604 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
151150, 69elind 3798 . . . . . . . . . 10 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
15257a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ 𝑌)
153 eqid 2622 . . . . . . . . . . . . 13 ((𝐽t 𝑆) ↾t 𝑌) = ((𝐽t 𝑆) ↾t 𝑌)
15428, 153restntr 20986 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ 𝑌 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑌) → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
15523, 27, 152, 154syl3anc 1326 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
156 restabs 20969 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑌𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
157103, 14, 106, 156syl3anc 1326 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
158157fveq2d 6195 . . . . . . . . . . . 12 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑌)) = (int‘(𝐽t 𝑌)))
159158fveq1d 6193 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
160155, 159eqtr3d 2658 . . . . . . . . . 10 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
161151, 160eleqtrd 2703 . . . . . . . . 9 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
16269snssd 4340 . . . . . . . . . . . . 13 (𝜑 → {𝐶} ⊆ 𝑌)
163 ssequn2 3786 . . . . . . . . . . . . 13 ({𝐶} ⊆ 𝑌 ↔ (𝑌 ∪ {𝐶}) = 𝑌)
164162, 163sylib 208 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∪ {𝐶}) = 𝑌)
165164oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (𝐽t (𝑌 ∪ {𝐶})) = (𝐽t 𝑌))
166165fveq2d 6195 . . . . . . . . . 10 (𝜑 → (int‘(𝐽t (𝑌 ∪ {𝐶}))) = (int‘(𝐽t 𝑌)))
167166, 125fveq12d 6197 . . . . . . . . 9 (𝜑 → ((int‘(𝐽t (𝑌 ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
168161, 167eleqtrrd 2704 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t (𝑌 ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
16913, 142, 64, 3, 143, 168limcres 23650 . . . . . . 7 (𝜑 → ((𝐺 ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = (𝐺 lim 𝐶))
17013, 142feqresmpt 6250 . . . . . . . 8 (𝜑 → (𝐺 ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)))
171170oveq1d 6665 . . . . . . 7 (𝜑 → ((𝐺 ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
172169, 171eqtr3d 2658 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
173139, 172eleqtrd 2703 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
1743mulcn 22670 . . . . . 6 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1755, 6, 7dvcl 23663 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
1761, 175mpdan 702 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
17713, 69ffvelrnd 6360 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ ℂ)
178 opelxpi 5148 . . . . . . 7 ((𝐾 ∈ ℂ ∧ (𝐺𝐶) ∈ ℂ) → ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ))
179176, 177, 178syl2anc 693 . . . . . 6 (𝜑 → ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ))
18077cncnpi 21082 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
181174, 179, 180sylancr 695 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
18255, 59, 74, 74, 3, 80, 132, 173, 181limccnp2 23656 . . . 4 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧))) lim 𝐶))
18316simprd 479 . . . . . 6 (𝜑𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
18470, 12fmptd 6385 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))):(𝑌 ∖ {𝐶})⟶ℂ)
18564ssdifssd 3748 . . . . . . . 8 (𝜑 → (𝑌 ∖ {𝐶}) ⊆ ℂ)
186 eqid 2622 . . . . . . . 8 (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))
187 undif1 4043 . . . . . . . . . . . . 13 ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = (𝑌 ∪ {𝐶})
188187, 164syl5eq 2668 . . . . . . . . . . . 12 (𝜑 → ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = 𝑌)
189188oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑌))
190189fveq2d 6195 . . . . . . . . . 10 (𝜑 → (int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑌)))
191190, 125fveq12d 6197 . . . . . . . . 9 (𝜑 → ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
192161, 191eleqtrrd 2704 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
193184, 62, 185, 3, 186, 192limcres 23650 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
19462resmptd 5452 . . . . . . . 8 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
195194oveq1d 6665 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
196193, 195eqtr3d 2658 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
197183, 196eleqtrd 2703 . . . . 5 (𝜑𝐿 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
19888, 5sstrd 3613 . . . . . . . 8 (𝜑 → (𝑋𝑌) ⊆ ℂ)
199 cncfmptc 22714 . . . . . . . 8 (((𝐹𝐶) ∈ ℂ ∧ (𝑋𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ∈ ((𝑋𝑌)–cn→ℂ))
20043, 198, 74, 199syl3anc 1326 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ∈ ((𝑋𝑌)–cn→ℂ))
201 eqidd 2623 . . . . . . 7 (𝑧 = 𝐶 → (𝐹𝐶) = (𝐹𝐶))
202200, 121, 201cnmptlimc 23654 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) lim 𝐶))
20343adantr 481 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋𝑌)) → (𝐹𝐶) ∈ ℂ)
204 eqid 2622 . . . . . . . . 9 (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) = (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶))
205203, 204fmptd 6385 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)):(𝑋𝑌)⟶ℂ)
206205limcdif 23640 . . . . . . 7 (𝜑 → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) lim 𝐶) = (((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶))
207 resmpt 5449 . . . . . . . . 9 (((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋𝑌) → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)))
208140, 207mp1i 13 . . . . . . . 8 (𝜑 → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)))
209208oveq1d 6665 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)) lim 𝐶))
210206, 209eqtrd 2656 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)) lim 𝐶))
211202, 210eleqtrd 2703 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)) lim 𝐶))
2125, 13, 14dvcl 23663 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
21311, 212mpdan 702 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
214 opelxpi 5148 . . . . . . 7 ((𝐿 ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ))
215213, 43, 214syl2anc 693 . . . . . 6 (𝜑 → ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ))
21677cncnpi 21082 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
217174, 215, 216sylancr 695 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
21871, 44, 74, 74, 3, 80, 197, 211, 217limccnp2 23656 . . . 4 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))) lim 𝐶))
2193addcn 22668 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
220176, 177mulcld 10060 . . . . . 6 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ℂ)
221213, 43mulcld 10060 . . . . . 6 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ℂ)
222 opelxpi 5148 . . . . . 6 (((𝐾 · (𝐺𝐶)) ∈ ℂ ∧ (𝐿 · (𝐹𝐶)) ∈ ℂ) → ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ))
223220, 221, 222syl2anc 693 . . . . 5 (𝜑 → ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ))
22477cncnpi 21082 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
225219, 223, 224sylancr 695 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
22660, 72, 74, 74, 3, 80, 182, 218, 225limccnp2 23656 . . 3 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
22742adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶𝑋)
22832, 227ffvelrnd 6360 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
22937, 228subcld 10392 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
230229, 59mulcld 10060 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) ∈ ℂ)
23169adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶𝑌)
23256, 231ffvelrnd 6360 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝐶) ∈ ℂ)
23359, 232subcld 10392 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
234233, 228mulcld 10060 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) ∈ ℂ)
23547, 227sseldd 3604 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ)
23648, 235subcld 10392 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
237230, 234, 236, 54divdird 10839 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))))
23837, 59mulcld 10060 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
239228, 59mulcld 10060 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝐶) · (𝐺𝑧)) ∈ ℂ)
240228, 232mulcld 10060 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝐶) · (𝐺𝐶)) ∈ ℂ)
241238, 239, 240npncand 10416 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
24237, 228, 59subdird 10487 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))))
243233, 228mulcomd 10061 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))))
244228, 59, 232subdid 10486 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
245243, 244eqtrd 2656 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
246242, 245oveq12d 6668 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))))
247 ffn 6045 . . . . . . . . . . . . 13 (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋)
2486, 247syl 17 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
249248adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐹 Fn 𝑋)
250 ffn 6045 . . . . . . . . . . . . 13 (𝐺:𝑌⟶ℂ → 𝐺 Fn 𝑌)
25113, 250syl 17 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑌)
252251adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐺 Fn 𝑌)
253 ssexg 4804 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
25446, 104, 253sylancl 694 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
255254adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑋 ∈ V)
256 ssexg 4804 . . . . . . . . . . . . 13 ((𝑌 ⊆ ℂ ∧ ℂ ∈ V) → 𝑌 ∈ V)
25764, 104, 256sylancl 694 . . . . . . . . . . . 12 (𝜑𝑌 ∈ V)
258257adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑌 ∈ V)
259 eqid 2622 . . . . . . . . . . 11 (𝑋𝑌) = (𝑋𝑌)
260 eqidd 2623 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
261 eqidd 2623 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑌) → (𝐺𝑧) = (𝐺𝑧))
262249, 252, 255, 258, 259, 260, 261ofval 6906 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ (𝑋𝑌)) → ((𝐹𝑓 · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
26335, 262mpdan 702 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑓 · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
264 eqidd 2623 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
265 eqidd 2623 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑌) → (𝐺𝐶) = (𝐺𝐶))
266249, 252, 255, 258, 259, 264, 265ofval 6906 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ (𝑋𝑌)) → ((𝐹𝑓 · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
267121, 266mpidan 704 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑓 · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
268263, 267oveq12d 6668 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
269241, 246, 2683eqtr4d 2666 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = (((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)))
270269oveq1d 6665 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)))
271229, 59, 236, 54div23d 10838 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)))
272233, 228, 236, 54div23d 10838 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶)) = ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))
273271, 272oveq12d 6668 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
274237, 270, 2733eqtr3d 2664 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
275274mpteq2dva 4744 . . . 4 (𝜑 → (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))))
276275oveq1d 6665 . . 3 (𝜑 → ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
277226, 276eleqtrrd 2704 . 2 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
278 eqid 2622 . . 3 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶)))
279 mulcl 10020 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
280279adantl 482 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
281280, 6, 13, 254, 257, 259off 6912 . . 3 (𝜑 → (𝐹𝑓 · 𝐺):(𝑋𝑌)⟶ℂ)
2822, 3, 278, 5, 281, 88eldv 23662 . 2 (𝜑 → (𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ∧ ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 · 𝐺)‘𝑧) − ((𝐹𝑓 · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
28331, 277, 282mpbir2and 957 1 (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  cres 5116  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  intcnt 20821   Cn ccn 21028   CnP ccnp 21029   ×t ctx 21363  cnccncf 22679   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvmul  23704  dvmulf  23706  dvef  23743
  Copyright terms: Public domain W3C validator