Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre4 Structured version   Visualization version   Unicode version

Theorem rfcnpre4 39193
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values smaller or equal than a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre4.1  |-  F/_ t F
rfcnpre4.2  |-  K  =  ( topGen `  ran  (,) )
rfcnpre4.3  |-  T  = 
U. J
rfcnpre4.4  |-  A  =  { t  e.  T  |  ( F `  t )  <_  B }
rfcnpre4.5  |-  ( ph  ->  B  e.  RR )
rfcnpre4.6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
Assertion
Ref Expression
rfcnpre4  |-  ( ph  ->  A  e.  ( Clsd `  J ) )
Distinct variable groups:    t, B    t, T
Allowed substitution hints:    ph( t)    A( t)    F( t)    J( t)    K( t)

Proof of Theorem rfcnpre4
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 rfcnpre4.2 . . . . . . . 8  |-  K  =  ( topGen `  ran  (,) )
2 rfcnpre4.3 . . . . . . . 8  |-  T  = 
U. J
3 eqid 2622 . . . . . . . 8  |-  ( J  Cn  K )  =  ( J  Cn  K
)
4 rfcnpre4.6 . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
51, 2, 3, 4fcnre 39184 . . . . . . 7  |-  ( ph  ->  F : T --> RR )
6 ffn 6045 . . . . . . 7  |-  ( F : T --> RR  ->  F  Fn  T )
7 elpreima 6337 . . . . . . 7  |-  ( F  Fn  T  ->  (
s  e.  ( `' F " ( -oo (,] B ) )  <->  ( s  e.  T  /\  ( F `  s )  e.  ( -oo (,] B
) ) ) )
85, 6, 73syl 18 . . . . . 6  |-  ( ph  ->  ( s  e.  ( `' F " ( -oo (,] B ) )  <->  ( s  e.  T  /\  ( F `  s )  e.  ( -oo (,] B
) ) ) )
9 mnfxr 10096 . . . . . . . . 9  |- -oo  e.  RR*
10 rfcnpre4.5 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
1110rexrd 10089 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR* )
1211adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  T )  ->  B  e.  RR* )
13 elioc1 12217 . . . . . . . . 9  |-  ( ( -oo  e.  RR*  /\  B  e.  RR* )  ->  (
( F `  s
)  e.  ( -oo (,] B )  <->  ( ( F `  s )  e.  RR*  /\ -oo  <  ( F `  s )  /\  ( F `  s )  <_  B
) ) )
149, 12, 13sylancr 695 . . . . . . . 8  |-  ( (
ph  /\  s  e.  T )  ->  (
( F `  s
)  e.  ( -oo (,] B )  <->  ( ( F `  s )  e.  RR*  /\ -oo  <  ( F `  s )  /\  ( F `  s )  <_  B
) ) )
15 simpr3 1069 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  T )  /\  (
( F `  s
)  e.  RR*  /\ -oo  <  ( F `  s
)  /\  ( F `  s )  <_  B
) )  ->  ( F `  s )  <_  B )
165ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  T )  ->  ( F `  s )  e.  RR )
1716rexrd 10089 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  T )  ->  ( F `  s )  e.  RR* )
1817adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  T )  /\  ( F `  s )  <_  B )  ->  ( F `  s )  e.  RR* )
1916adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  T )  /\  ( F `  s )  <_  B )  ->  ( F `  s )  e.  RR )
20 mnflt 11957 . . . . . . . . . . 11  |-  ( ( F `  s )  e.  RR  -> -oo  <  ( F `  s ) )
2119, 20syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  T )  /\  ( F `  s )  <_  B )  -> -oo  <  ( F `  s ) )
22 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  T )  /\  ( F `  s )  <_  B )  ->  ( F `  s )  <_  B )
2318, 21, 223jca 1242 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  T )  /\  ( F `  s )  <_  B )  ->  (
( F `  s
)  e.  RR*  /\ -oo  <  ( F `  s
)  /\  ( F `  s )  <_  B
) )
2415, 23impbida 877 . . . . . . . 8  |-  ( (
ph  /\  s  e.  T )  ->  (
( ( F `  s )  e.  RR*  /\ -oo  <  ( F `  s )  /\  ( F `  s )  <_  B )  <->  ( F `  s )  <_  B
) )
2514, 24bitrd 268 . . . . . . 7  |-  ( (
ph  /\  s  e.  T )  ->  (
( F `  s
)  e.  ( -oo (,] B )  <->  ( F `  s )  <_  B
) )
2625pm5.32da 673 . . . . . 6  |-  ( ph  ->  ( ( s  e.  T  /\  ( F `
 s )  e.  ( -oo (,] B
) )  <->  ( s  e.  T  /\  ( F `  s )  <_  B ) ) )
278, 26bitrd 268 . . . . 5  |-  ( ph  ->  ( s  e.  ( `' F " ( -oo (,] B ) )  <->  ( s  e.  T  /\  ( F `  s )  <_  B ) ) )
28 nfcv 2764 . . . . . 6  |-  F/_ t
s
29 nfcv 2764 . . . . . 6  |-  F/_ t T
30 rfcnpre4.1 . . . . . . . 8  |-  F/_ t F
3130, 28nffv 6198 . . . . . . 7  |-  F/_ t
( F `  s
)
32 nfcv 2764 . . . . . . 7  |-  F/_ t  <_
33 nfcv 2764 . . . . . . 7  |-  F/_ t B
3431, 32, 33nfbr 4699 . . . . . 6  |-  F/ t ( F `  s
)  <_  B
35 fveq2 6191 . . . . . . 7  |-  ( t  =  s  ->  ( F `  t )  =  ( F `  s ) )
3635breq1d 4663 . . . . . 6  |-  ( t  =  s  ->  (
( F `  t
)  <_  B  <->  ( F `  s )  <_  B
) )
3728, 29, 34, 36elrabf 3360 . . . . 5  |-  ( s  e.  { t  e.  T  |  ( F `
 t )  <_  B }  <->  ( s  e.  T  /\  ( F `
 s )  <_  B ) )
3827, 37syl6bbr 278 . . . 4  |-  ( ph  ->  ( s  e.  ( `' F " ( -oo (,] B ) )  <->  s  e.  { t  e.  T  | 
( F `  t
)  <_  B }
) )
3938eqrdv 2620 . . 3  |-  ( ph  ->  ( `' F "
( -oo (,] B ) )  =  { t  e.  T  |  ( F `  t )  <_  B } )
40 rfcnpre4.4 . . 3  |-  A  =  { t  e.  T  |  ( F `  t )  <_  B }
4139, 40syl6eqr 2674 . 2  |-  ( ph  ->  ( `' F "
( -oo (,] B ) )  =  A )
42 iocmnfcld 22572 . . . . 5  |-  ( B  e.  RR  ->  ( -oo (,] B )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
4310, 42syl 17 . . . 4  |-  ( ph  ->  ( -oo (,] B
)  e.  ( Clsd `  ( topGen `  ran  (,) )
) )
441fveq2i 6194 . . . 4  |-  ( Clsd `  K )  =  (
Clsd `  ( topGen ` 
ran  (,) ) )
4543, 44syl6eleqr 2712 . . 3  |-  ( ph  ->  ( -oo (,] B
)  e.  ( Clsd `  K ) )
46 cnclima 21072 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  ( -oo (,] B )  e.  ( Clsd `  K
) )  ->  ( `' F " ( -oo (,] B ) )  e.  ( Clsd `  J
) )
474, 45, 46syl2anc 693 . 2  |-  ( ph  ->  ( `' F "
( -oo (,] B ) )  e.  ( Clsd `  J ) )
4841, 47eqeltrrd 2702 1  |-  ( ph  ->  A  e.  ( Clsd `  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   F/_wnfc 2751   {crab 2916   U.cuni 4436   class class class wbr 4653   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   (,]cioc 12176   topGenctg 16098   Clsdccld 20820    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-ioc 12180  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cn 21031
This theorem is referenced by:  stoweidlem59  40276
  Copyright terms: Public domain W3C validator