Proof of Theorem rhmsubcsetclem2
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
| 2 | 1 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝜑) |
| 3 | 2 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑) |
| 4 | | simpr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
| 5 | 4 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
| 6 | | simpr 477 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦𝐻𝑧)) |
| 7 | 6 | adantl 482 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧)) |
| 8 | | rhmsubcsetc.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| 9 | 8 | rhmresel 42010 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧)) |
| 10 | 3, 5, 7, 9 | syl3anc 1326 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RingHom 𝑧)) |
| 11 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 12 | | simpl 473 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 13 | 11, 12 | anim12i 590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 14 | 13 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 15 | | simprl 794 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦)) |
| 16 | 8 | rhmresel 42010 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦)) |
| 17 | 3, 14, 15, 16 | syl3anc 1326 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RingHom 𝑦)) |
| 18 | | rhmco 18737 |
. . . . 5
⊢ ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
| 19 | 10, 17, 18 | syl2anc 693 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
| 20 | | rhmsubcsetc.c |
. . . . 5
⊢ 𝐶 = (ExtStrCat‘𝑈) |
| 21 | | rhmsubcsetc.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 22 | 21 | ad3antrrr 766 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈 ∈ 𝑉) |
| 23 | | eqid 2622 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 24 | | rhmsubcsetc.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
| 25 | 24 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
| 26 | | elinel2 3800 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ 𝑈) |
| 27 | 25, 26 | syl6bi 243 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 28 | 27 | imp 445 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
| 29 | 28 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝑈) |
| 30 | 29 | adantr 481 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ 𝑈) |
| 31 | 24 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Ring ∩ 𝑈))) |
| 32 | | elinel2 3800 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (Ring ∩ 𝑈) → 𝑦 ∈ 𝑈) |
| 33 | 31, 32 | syl6bi 243 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
| 34 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
| 35 | 34 | com12 32 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑦 ∈ 𝑈)) |
| 36 | 35 | adantr 481 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑦 ∈ 𝑈)) |
| 37 | 36 | impcom 446 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝑈) |
| 38 | 37 | adantr 481 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ 𝑈) |
| 39 | 24 | eleq2d 2687 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (Ring ∩ 𝑈))) |
| 40 | | elinel2 3800 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (Ring ∩ 𝑈) → 𝑧 ∈ 𝑈) |
| 41 | 39, 40 | syl6bi 243 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈)) |
| 42 | 41 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈)) |
| 43 | 42 | adantld 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝑈)) |
| 44 | 43 | imp 445 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝑈) |
| 45 | 44 | adantr 481 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ 𝑈) |
| 46 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑥) =
(Base‘𝑥) |
| 47 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑦) =
(Base‘𝑦) |
| 48 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑧) =
(Base‘𝑧) |
| 49 | | simprl 794 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → 𝜑) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝜑) |
| 51 | 11 | anim1i 592 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 52 | 51 | ancoms 469 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 53 | 52 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 54 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥𝐻𝑦)) |
| 55 | 50, 53, 54, 16 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦)) |
| 56 | 46, 47 | rhmf 18726 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
| 57 | 55, 56 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
| 58 | 57 | ex 450 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
| 59 | 58 | ex 450 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))) |
| 60 | 59 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))) |
| 61 | 60 | impcom 446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
| 62 | 61 | com12 32 |
. . . . . . 7
⊢ (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
| 63 | 62 | adantr 481 |
. . . . . 6
⊢ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
| 64 | 63 | impcom 446 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
| 65 | 9 | 3expa 1265 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧)) |
| 66 | 47, 48 | rhmf 18726 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
| 68 | 67 | ex 450 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
| 69 | 68 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
| 70 | 69 | adantld 483 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
| 71 | 70 | imp 445 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
| 72 | 20, 22, 23, 30, 38, 45, 46, 47, 48, 64, 71 | estrcco 16770 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔 ∘ 𝑓)) |
| 73 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| 74 | 73 | oveqdr 6674 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥𝐻𝑧) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧)) |
| 75 | | ovres 6800 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧)) |
| 76 | 75 | ad2ant2l 782 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧)) |
| 77 | 74, 76 | eqtrd 2656 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
| 78 | 77 | adantr 481 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
| 79 | 19, 72, 78 | 3eltr4d 2716 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 80 | 79 | ralrimivva 2971 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 81 | 80 | ralrimivva 2971 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |