![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3wwlks2on | Structured version Visualization version GIF version |
Description: A length 3 string which represents a walk of length 2 between two vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) |
Ref | Expression |
---|---|
s3wwlks2on.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
s3wwlks2on | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)〈“𝐴𝐵𝐶”〉 ∧ (#‘𝑓) = 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s3wwlks2on.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | wwlknon 26742 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶))) |
3 | 2 | 3adant1 1079 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶))) |
4 | s3fv0 13636 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
5 | s3fv2 13638 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
6 | 4, 5 | anim12i 590 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
7 | 6 | 3adant1 1079 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
8 | 7 | biantrud 528 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ↔ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)))) |
9 | 3anass 1042 | . . 3 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) ↔ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶))) | |
10 | 8, 9 | syl6rbbr 279 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) ↔ 〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺))) |
11 | wlklnwwlknupgr 26772 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (∃𝑓(𝑓(Walks‘𝐺)〈“𝐴𝐵𝐶”〉 ∧ (#‘𝑓) = 2) ↔ 〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺))) | |
12 | 11 | bicomd 213 | . . 3 ⊢ (𝐺 ∈ UPGraph → (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)〈“𝐴𝐵𝐶”〉 ∧ (#‘𝑓) = 2))) |
13 | 12 | 3ad2ant1 1082 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)〈“𝐴𝐵𝐶”〉 ∧ (#‘𝑓) = 2))) |
14 | 3, 10, 13 | 3bitrd 294 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)〈“𝐴𝐵𝐶”〉 ∧ (#‘𝑓) = 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 0cc0 9936 2c2 11070 #chash 13117 〈“cs3 13587 Vtxcvtx 25874 UPGraph cupgr 25975 Walkscwlks 26492 WWalksN cwwlksn 26718 WWalksNOn cwwlksnon 26719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-ac2 9285 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-ac 8939 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-s2 13593 df-s3 13594 df-edg 25940 df-uhgr 25953 df-upgr 25977 df-wlks 26495 df-wwlks 26722 df-wwlksn 26723 df-wwlksnon 26724 |
This theorem is referenced by: umgrwwlks2on 26850 elwwlks2on 26852 |
Copyright terms: Public domain | W3C validator |