| Step | Hyp | Ref
| Expression |
| 1 | | serf0.4 |
. . . . 5
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 2 | | serf0.2 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | | caucvgb.1 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 4 | 3 | caucvgb 14410 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
| 5 | 2, 1, 4 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
| 6 | 1, 5 | mpbid 222 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
| 7 | 3 | cau3 14095 |
. . . 4
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) |
| 8 | 6, 7 | sylib 208 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) |
| 9 | 3 | peano2uzs 11742 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
| 10 | 9 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ 𝑍) |
| 11 | | eluzelz 11697 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → 𝑚 ∈ ℤ) |
| 12 | | uzid 11702 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
(ℤ≥‘𝑚)) |
| 13 | | peano2uz 11741 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑚) → (𝑚 + 1) ∈
(ℤ≥‘𝑚)) |
| 14 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀( + , 𝐹)‘(𝑚 + 1))) |
| 15 | 14 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘)) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) |
| 16 | 15 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))))) |
| 17 | 16 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
| 18 | 17 | rspcv 3305 |
. . . . . . . . . 10
⊢ ((𝑚 + 1) ∈
(ℤ≥‘𝑚) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
| 19 | 11, 12, 13, 18 | 4syl 19 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
| 20 | 19 | adantld 483 |
. . . . . . . 8
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
| 21 | 20 | ralimia 2950 |
. . . . . . 7
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥) |
| 22 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
| 23 | 22, 3 | syl6eleq 2711 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 24 | | eluzelz 11697 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
| 26 | | eluzp1m1 11711 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈
(ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) |
| 27 | 25, 26 | sylan 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) |
| 28 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘𝑚) = (seq𝑀( + , 𝐹)‘(𝑘 − 1))) |
| 29 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑘 − 1) → (𝑚 + 1) = ((𝑘 − 1) + 1)) |
| 30 | 29 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) |
| 31 | 28, 30 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) |
| 32 | 31 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))))) |
| 33 | 32 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) |
| 34 | 33 | rspcv 3305 |
. . . . . . . . . 10
⊢ ((𝑘 − 1) ∈
(ℤ≥‘𝑗) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) |
| 35 | 27, 34 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) |
| 36 | | serf0.5 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 37 | 3, 2, 36 | serf 12829 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 38 | 37 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 39 | 3 | uztrn2 11705 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ 𝑍 ∧ (𝑘 − 1) ∈
(ℤ≥‘𝑗)) → (𝑘 − 1) ∈ 𝑍) |
| 40 | 22, 39 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 − 1) ∈
(ℤ≥‘𝑗)) → (𝑘 − 1) ∈ 𝑍) |
| 41 | 27, 40 | syldan 487 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍) |
| 42 | 38, 41 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘(𝑘 − 1)) ∈ ℂ) |
| 43 | 3 | uztrn2 11705 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
| 44 | 10, 43 | sylan 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
| 45 | 38, 44 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℂ) |
| 46 | 42, 45 | abssubd 14192 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) |
| 47 | | eluzelz 11697 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘(𝑗 + 1)) → 𝑘 ∈ ℤ) |
| 48 | 47 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℤ) |
| 49 | 48 | zcnd 11483 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℂ) |
| 50 | | ax-1cn 9994 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 51 | | npcan 10290 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 −
1) + 1) = 𝑘) |
| 52 | 49, 50, 51 | sylancl 694 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘) |
| 53 | 52 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑘)) |
| 54 | 53 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) |
| 55 | 54 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘)))) |
| 56 | 2 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑀 ∈ ℤ) |
| 57 | | eluzp1p1 11713 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 58 | 23, 57 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 59 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘(𝑀 + 1)) =
(ℤ≥‘(𝑀 + 1)) |
| 60 | 59 | uztrn2 11705 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) |
| 61 | 58, 60 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) |
| 62 | | seqm1 12818 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘))) |
| 63 | 56, 61, 62 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘))) |
| 64 | 63 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) |
| 65 | 36 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 66 | 44, 65 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℂ) |
| 67 | 42, 66 | pncan2d 10394 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (𝐹‘𝑘)) |
| 68 | 64, 67 | eqtr2d 2657 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) = ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) |
| 69 | 68 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (abs‘(𝐹‘𝑘)) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) |
| 70 | 46, 55, 69 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹‘𝑘))) |
| 71 | 70 | breq1d 4663 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
((abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
| 72 | 35, 71 | sylibd 229 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹‘𝑘)) < 𝑥)) |
| 73 | 72 | ralrimdva 2969 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 74 | 21, 73 | syl5 34 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 75 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) →
(ℤ≥‘𝑛) = (ℤ≥‘(𝑗 + 1))) |
| 76 | 75 | raleqdv 3144 |
. . . . . . 7
⊢ (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 77 | 76 | rspcev 3309 |
. . . . . 6
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) |
| 78 | 10, 74, 77 | syl6an 568 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 79 | 78 | rexlimdva 3031 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 80 | 79 | ralimdv 2963 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 81 | 8, 80 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) |
| 82 | | serf0.3 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 83 | | eqidd 2623 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 84 | 3, 2, 82, 83, 36 | clim0c 14238 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 85 | 81, 84 | mpbird 247 |
1
⊢ (𝜑 → 𝐹 ⇝ 0) |