MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serf0 Structured version   Visualization version   Unicode version

Theorem serf0 14411
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
caucvgb.1  |-  Z  =  ( ZZ>= `  M )
serf0.2  |-  ( ph  ->  M  e.  ZZ )
serf0.3  |-  ( ph  ->  F  e.  V )
serf0.4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
serf0.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
serf0  |-  ( ph  ->  F  ~~>  0 )
Distinct variable groups:    k, F    k, M    k, Z    ph, k    k, V

Proof of Theorem serf0
Dummy variables  j  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serf0.4 . . . . 5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
2 serf0.2 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 caucvgb.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
43caucvgb 14410 . . . . . 6  |-  ( ( M  e.  ZZ  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  (  seq M
(  +  ,  F
)  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 j ) ) )  <  x ) ) )
52, 1, 4syl2anc 693 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 j ) ) )  <  x ) ) )
61, 5mpbid 222 . . . 4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  j
) ) )  < 
x ) )
73cau3 14095 . . . 4  |-  ( A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x ) )
86, 7sylib 208 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x ) )
93peano2uzs 11742 . . . . . . 7  |-  ( j  e.  Z  ->  (
j  +  1 )  e.  Z )
109adantl 482 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  1 )  e.  Z )
11 eluzelz 11697 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  j
)  ->  m  e.  ZZ )
12 uzid 11702 . . . . . . . . . 10  |-  ( m  e.  ZZ  ->  m  e.  ( ZZ>= `  m )
)
13 peano2uz 11741 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  m
)  ->  ( m  +  1 )  e.  ( ZZ>= `  m )
)
14 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  ( m  + 
1 )  ->  (  seq M (  +  ,  F ) `  k
)  =  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) )
1514oveq2d 6666 . . . . . . . . . . . . 13  |-  ( k  =  ( m  + 
1 )  ->  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) )  =  ( (  seq M (  +  ,  F ) `
 m )  -  (  seq M (  +  ,  F ) `  ( m  +  1
) ) ) )
1615fveq2d 6195 . . . . . . . . . . . 12  |-  ( k  =  ( m  + 
1 )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  k
) ) )  =  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) ) )
1716breq1d 4663 . . . . . . . . . . 11  |-  ( k  =  ( m  + 
1 )  ->  (
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x  <->  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1817rspcv 3305 . . . . . . . . . 10  |-  ( ( m  +  1 )  e.  ( ZZ>= `  m
)  ->  ( A. k  e.  ( ZZ>= `  m ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 k ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1911, 12, 13, 184syl 19 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  m ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 k ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
2019adantld 483 . . . . . . . 8  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( (
(  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
2120ralimia 2950 . . . . . . 7  |-  ( A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x )
22 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
2322, 3syl6eleq 2711 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
24 eluzelz 11697 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2523, 24syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ZZ )
26 eluzp1m1 11711 . . . . . . . . . . 11  |-  ( ( j  e.  ZZ  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  -> 
( k  -  1 )  e.  ( ZZ>= `  j ) )
2725, 26sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( k  -  1 )  e.  ( ZZ>= `  j )
)
28 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( m  =  ( k  - 
1 )  ->  (  seq M (  +  ,  F ) `  m
)  =  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )
29 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( m  =  ( k  - 
1 )  ->  (
m  +  1 )  =  ( ( k  -  1 )  +  1 ) )
3029fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( m  =  ( k  - 
1 )  ->  (  seq M (  +  ,  F ) `  (
m  +  1 ) )  =  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) )
3128, 30oveq12d 6668 . . . . . . . . . . . . 13  |-  ( m  =  ( k  - 
1 )  ->  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  -  (  seq M (  +  ,  F ) `  ( ( k  - 
1 )  +  1 ) ) ) )
3231fveq2d 6195 . . . . . . . . . . . 12  |-  ( m  =  ( k  - 
1 )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  =  ( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) ) )
3332breq1d 4663 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x  <->  ( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
3433rspcv 3305 . . . . . . . . . 10  |-  ( ( k  -  1 )  e.  ( ZZ>= `  j
)  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
3527, 34syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
36 serf0.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
373, 2, 36serf 12829 . . . . . . . . . . . . . 14  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
3837ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  seq M (  +  ,  F ) : Z --> CC )
393uztrn2 11705 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  ( k  -  1 )  e.  ( ZZ>= `  j ) )  -> 
( k  -  1 )  e.  Z )
4022, 39sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  (
k  -  1 )  e.  ( ZZ>= `  j
) )  ->  (
k  -  1 )  e.  Z )
4127, 40syldan 487 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( k  -  1 )  e.  Z )
4238, 41ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
k  -  1 ) )  e.  CC )
433uztrn2 11705 . . . . . . . . . . . . . 14  |-  ( ( ( j  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  -> 
k  e.  Z )
4410, 43sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  Z )
4538, 44ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  CC )
4642, 45abssubd 14192 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  k )
) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  k )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) ) ) )
47 eluzelz 11697 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  (
j  +  1 ) )  ->  k  e.  ZZ )
4847adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ZZ )
4948zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  CC )
50 ax-1cn 9994 . . . . . . . . . . . . . . 15  |-  1  e.  CC
51 npcan 10290 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  - 
1 )  +  1 )  =  k )
5249, 50, 51sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (
k  -  1 )  +  1 )  =  k )
5352fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) )  =  (  seq M (  +  ,  F ) `  k
) )
5453oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  (
k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  -  (  seq M (  +  ,  F ) `  k ) ) )
5554fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  ( (
k  -  1 )  +  1 ) ) ) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  k
) ) ) )
562ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  M  e.  ZZ )
57 eluzp1p1 11713 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
5823, 57syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
59 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
6059uztrn2 11705 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  +  1 )  e.  ( ZZ>= `  ( M  +  1
) )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
6158, 60sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
62 seqm1 12818 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq M (  +  ,  F ) `  k )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  +  ( F `  k
) ) )
6356, 61, 62syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  =  ( (  seq M (  +  ,  F ) `  ( k  -  1 ) )  +  ( F `  k ) ) )
6463oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  k
)  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )  =  ( ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  +  ( F `  k ) )  -  (  seq M (  +  ,  F ) `  ( k  -  1 ) ) ) )
6536adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
6644, 65syldan 487 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( F `  k )  e.  CC )
6742, 66pncan2d 10394 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  +  ( F `  k ) )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )  =  ( F `  k ) )
6864, 67eqtr2d 2657 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( F `  k )  =  ( (  seq M (  +  ,  F ) `
 k )  -  (  seq M (  +  ,  F ) `  ( k  -  1 ) ) ) )
6968fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  k )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) ) ) )
7046, 55, 693eqtr4d 2666 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  ( (
k  -  1 )  +  1 ) ) ) )  =  ( abs `  ( F `
 k ) ) )
7170breq1d 4663 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( ( abs `  ( (  seq M (  +  ,  F ) `  (
k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x  <->  ( abs `  ( F `  k )
)  <  x )
)
7235, 71sylibd 229 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  ( F `  k )
)  <  x )
)
7372ralrimdva 2969 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x  ->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
7421, 73syl5 34 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
75 fveq2 6191 . . . . . . . 8  |-  ( n  =  ( j  +  1 )  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  ( j  +  1 ) ) )
7675raleqdv 3144 . . . . . . 7  |-  ( n  =  ( j  +  1 )  ->  ( A. k  e.  ( ZZ>=
`  n ) ( abs `  ( F `
 k ) )  <  x  <->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
7776rspcev 3309 . . . . . 6  |-  ( ( ( j  +  1 )  e.  Z  /\  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k
) )  <  x
)  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
7810, 74, 77syl6an 568 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
7978rexlimdva 3031 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
8079ralimdv 2963 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
818, 80mpd 15 . 2  |-  ( ph  ->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( abs `  ( F `  k
) )  <  x
)
82 serf0.3 . . 3  |-  ( ph  ->  F  e.  V )
83 eqidd 2623 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
843, 2, 82, 83, 36clim0c 14238 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
8581, 84mpbird 247 1  |-  ( ph  ->  F  ~~>  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832    seqcseq 12801   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220
This theorem is referenced by:  mertenslem2  14617  radcnvlem1  24167  dvgrat  38511  expfac  39889
  Copyright terms: Public domain W3C validator