Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ltfirpmpt2 Structured version   Visualization version   GIF version

Theorem sge0ltfirpmpt2 40643
Description: If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ltfirpmpt2.xph 𝑥𝜑
sge0ltfirpmpt2.a (𝜑𝐴𝑉)
sge0ltfirpmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0ltfirpmpt2.rp (𝜑𝑌 ∈ ℝ+)
sge0ltfirpmpt2.re (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
Assertion
Ref Expression
sge0ltfirpmpt2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem sge0ltfirpmpt2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sge0ltfirpmpt2.a . . 3 (𝜑𝐴𝑉)
2 sge0ltfirpmpt2.xph . . . 4 𝑥𝜑
3 sge0ltfirpmpt2.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2622 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6387 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0ltfirpmpt2.rp . . 3 (𝜑𝑌 ∈ ℝ+)
7 sge0ltfirpmpt2.re . . 3 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
81, 5, 6, 7sge0ltfirp 40617 . 2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
9 simpr 477 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
10 elpwinss 39216 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110resmptd 5452 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴𝐵) ↾ 𝑦) = (𝑥𝑦𝐵))
1211fveq2d 6195 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
1312adantl 482 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
14 elinel2 3800 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
1514adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
16 nfv 1843 . . . . . . . . . . 11 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1828 . . . . . . . . . 10 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 790 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
1910sselda 3603 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2019adantll 750 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
212, 1, 3, 7sge0rernmpt 40639 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
2218, 20, 21syl2anc 693 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
23 eqid 2622 . . . . . . . . . 10 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
2417, 22, 23fmptdf 6387 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,)+∞))
2515, 24sge0fsum 40604 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘))
26 simpr 477 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑦)
27 simpll 790 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
2810sselda 3603 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
2928adantll 750 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
30 nfv 1843 . . . . . . . . . . . . . . 15 𝑥 𝑘𝐴
312, 30nfan 1828 . . . . . . . . . . . . . 14 𝑥(𝜑𝑘𝐴)
32 nfcsb1v 3549 . . . . . . . . . . . . . . 15 𝑥𝑘 / 𝑥𝐵
3332nfel1 2779 . . . . . . . . . . . . . 14 𝑥𝑘 / 𝑥𝐵 ∈ (0[,)+∞)
3431, 33nfim 1825 . . . . . . . . . . . . 13 𝑥((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
35 eleq1 2689 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
3635anbi2d 740 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((𝜑𝑥𝐴) ↔ (𝜑𝑘𝐴)))
37 csbeq1a 3542 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
3837eleq1d 2686 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝐵 ∈ (0[,)+∞) ↔ 𝑘 / 𝑥𝐵 ∈ (0[,)+∞)))
3936, 38imbi12d 334 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))))
4034, 39, 21chvar 2262 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
4127, 29, 40syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
42 nfcv 2764 . . . . . . . . . . . . 13 𝑘𝐵
4342, 32, 37cbvmpt 4749 . . . . . . . . . . . 12 (𝑥𝑦𝐵) = (𝑘𝑦𝑘 / 𝑥𝐵)
4443fvmpt2 6291 . . . . . . . . . . 11 ((𝑘𝑦𝑘 / 𝑥𝐵 ∈ (0[,)+∞)) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4526, 41, 44syl2anc 693 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4645sumeq2dv 14433 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑘𝑦 𝑘 / 𝑥𝐵)
47 eqcom 2629 . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝑘 = 𝑥)
4847imbi1i 339 . . . . . . . . . . . . 13 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵))
49 eqcom 2629 . . . . . . . . . . . . . 14 (𝐵 = 𝑘 / 𝑥𝐵𝑘 / 𝑥𝐵 = 𝐵)
5049imbi2i 326 . . . . . . . . . . . . 13 ((𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5148, 50bitri 264 . . . . . . . . . . . 12 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5237, 51mpbi 220 . . . . . . . . . . 11 (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵)
53 nfcv 2764 . . . . . . . . . . 11 𝑥𝑦
54 nfcv 2764 . . . . . . . . . . 11 𝑘𝑦
5552, 53, 54, 32, 42cbvsum 14425 . . . . . . . . . 10 Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵
5655a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵)
5746, 56eqtrd 2656 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑥𝑦 𝐵)
5813, 25, 573eqtrd 2660 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = Σ𝑥𝑦 𝐵)
5958oveq1d 6665 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
6059adantr 481 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
619, 60breqtrd 4679 . . . 4 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
6261ex 450 . . 3 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
6362reximdva 3017 . 2 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
648, 63mpd 15 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  wrex 2913  csb 3533  cin 3573  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  cres 5116  cfv 5888  (class class class)co 6650  Fincfn 7955  cr 9935  0cc0 9936   + caddc 9939  +∞cpnf 10071   < clt 10074  +crp 11832  [,)cico 12177  [,]cicc 12178  Σcsu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0xaddlem2  40651  sge0gtfsumgt  40660
  Copyright terms: Public domain W3C validator