Proof of Theorem snmlff
| Step | Hyp | Ref
| Expression |
| 1 | | snmlff.f |
. 2
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) |
| 2 | | fzfid 12772 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
(1...𝑛) ∈
Fin) |
| 3 | | ssrab2 3687 |
. . . . . . 7
⊢ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛) |
| 4 | | ssfi 8180 |
. . . . . . 7
⊢
(((1...𝑛) ∈ Fin
∧ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ∈ Fin) |
| 5 | 2, 3, 4 | sylancl 694 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ∈ Fin) |
| 6 | | hashcl 13147 |
. . . . . 6
⊢ ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ∈ Fin → (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ∈
ℕ0) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
(#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ∈
ℕ0) |
| 8 | 7 | nn0red 11352 |
. . . 4
⊢ (𝑛 ∈ ℕ →
(#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ) |
| 9 | | nndivre 11056 |
. . . 4
⊢
(((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ) |
| 10 | 8, 9 | mpancom 703 |
. . 3
⊢ (𝑛 ∈ ℕ →
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ) |
| 11 | 7 | nn0ge0d 11354 |
. . . 4
⊢ (𝑛 ∈ ℕ → 0 ≤
(#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵})) |
| 12 | | nnre 11027 |
. . . 4
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
| 13 | | nngt0 11049 |
. . . 4
⊢ (𝑛 ∈ ℕ → 0 <
𝑛) |
| 14 | | divge0 10892 |
. . . 4
⊢
((((#‘{𝑘
∈ (1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 0 ≤
(#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵})) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) |
| 15 | 8, 11, 12, 13, 14 | syl22anc 1327 |
. . 3
⊢ (𝑛 ∈ ℕ → 0 ≤
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) |
| 16 | | ssdomg 8001 |
. . . . . . . 8
⊢
((1...𝑛) ∈ Fin
→ ({𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛))) |
| 17 | 2, 3, 16 | mpisyl 21 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)) |
| 18 | | hashdom 13168 |
. . . . . . . 8
⊢ (({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ≤ (#‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛))) |
| 19 | 5, 2, 18 | syl2anc 693 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ≤ (#‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛))) |
| 20 | 17, 19 | mpbird 247 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
(#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ≤ (#‘(1...𝑛))) |
| 21 | | nnnn0 11299 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 22 | | hashfz1 13134 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ (#‘(1...𝑛)) =
𝑛) |
| 23 | 21, 22 | syl 17 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
(#‘(1...𝑛)) = 𝑛) |
| 24 | 20, 23 | breqtrd 4679 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
(#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ≤ 𝑛) |
| 25 | | nncn 11028 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 26 | 25 | mulid1d 10057 |
. . . . 5
⊢ (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛) |
| 27 | 24, 26 | breqtrrd 4681 |
. . . 4
⊢ (𝑛 ∈ ℕ →
(#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)) |
| 28 | | 1red 10055 |
. . . . 5
⊢ (𝑛 ∈ ℕ → 1 ∈
ℝ) |
| 29 | | ledivmul 10899 |
. . . . 5
⊢
(((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 1 ∈ ℝ
∧ (𝑛 ∈ ℝ
∧ 0 < 𝑛)) →
(((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1))) |
| 30 | 8, 28, 12, 13, 29 | syl112anc 1330 |
. . . 4
⊢ (𝑛 ∈ ℕ →
(((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1))) |
| 31 | 27, 30 | mpbird 247 |
. . 3
⊢ (𝑛 ∈ ℕ →
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1) |
| 32 | | 0re 10040 |
. . . 4
⊢ 0 ∈
ℝ |
| 33 | | 1re 10039 |
. . . 4
⊢ 1 ∈
ℝ |
| 34 | 32, 33 | elicc2i 12239 |
. . 3
⊢
(((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1) ↔ (((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ ∧ 0 ≤
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∧ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1)) |
| 35 | 10, 15, 31, 34 | syl3anbrc 1246 |
. 2
⊢ (𝑛 ∈ ℕ →
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1)) |
| 36 | 1, 35 | fmpti 6383 |
1
⊢ 𝐹:ℕ⟶(0[,]1) |