MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splid Structured version   Visualization version   GIF version

Theorem splid 13504
Description: Splicing a subword for the same subword makes no difference. (Contributed by Stefan O'Rear, 20-Aug-2015.)
Assertion
Ref Expression
splid ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → (𝑆 splice ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = 𝑆)

Proof of Theorem splid
StepHypRef Expression
1 ovex 6678 . . 3 (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ V
2 splval 13502 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)) ∧ (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ V)) → (𝑆 splice ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = (((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (#‘𝑆)⟩)))
31, 2mp3anr3 1423 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → (𝑆 splice ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = (((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (#‘𝑆)⟩)))
4 simpl 473 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → 𝑆 ∈ Word 𝐴)
5 elfzuz 12338 . . . . . . 7 (𝑋 ∈ (0...𝑌) → 𝑋 ∈ (ℤ‘0))
65ad2antrl 764 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → 𝑋 ∈ (ℤ‘0))
7 eluzfz1 12348 . . . . . 6 (𝑋 ∈ (ℤ‘0) → 0 ∈ (0...𝑋))
86, 7syl 17 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → 0 ∈ (0...𝑋))
9 simprl 794 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → 𝑋 ∈ (0...𝑌))
10 simprr 796 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → 𝑌 ∈ (0...(#‘𝑆)))
11 ccatswrd 13456 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (0 ∈ (0...𝑋) ∧ 𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → ((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑆 substr ⟨0, 𝑌⟩))
124, 8, 9, 10, 11syl13anc 1328 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → ((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑆 substr ⟨0, 𝑌⟩))
1312oveq1d 6665 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → (((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (#‘𝑆)⟩)) = ((𝑆 substr ⟨0, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, (#‘𝑆)⟩)))
14 elfzuz 12338 . . . . . . 7 (𝑌 ∈ (0...(#‘𝑆)) → 𝑌 ∈ (ℤ‘0))
1514ad2antll 765 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → 𝑌 ∈ (ℤ‘0))
16 eluzfz1 12348 . . . . . 6 (𝑌 ∈ (ℤ‘0) → 0 ∈ (0...𝑌))
1715, 16syl 17 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → 0 ∈ (0...𝑌))
18 elfzuz2 12346 . . . . . . 7 (𝑌 ∈ (0...(#‘𝑆)) → (#‘𝑆) ∈ (ℤ‘0))
1918ad2antll 765 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → (#‘𝑆) ∈ (ℤ‘0))
20 eluzfz2 12349 . . . . . 6 ((#‘𝑆) ∈ (ℤ‘0) → (#‘𝑆) ∈ (0...(#‘𝑆)))
2119, 20syl 17 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → (#‘𝑆) ∈ (0...(#‘𝑆)))
22 ccatswrd 13456 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (0 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)) ∧ (#‘𝑆) ∈ (0...(#‘𝑆)))) → ((𝑆 substr ⟨0, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, (#‘𝑆)⟩)) = (𝑆 substr ⟨0, (#‘𝑆)⟩))
234, 17, 10, 21, 22syl13anc 1328 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → ((𝑆 substr ⟨0, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, (#‘𝑆)⟩)) = (𝑆 substr ⟨0, (#‘𝑆)⟩))
24 swrdid 13428 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨0, (#‘𝑆)⟩) = 𝑆)
2524adantr 481 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → (𝑆 substr ⟨0, (#‘𝑆)⟩) = 𝑆)
2623, 25eqtrd 2656 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → ((𝑆 substr ⟨0, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, (#‘𝑆)⟩)) = 𝑆)
2713, 26eqtrd 2656 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → (((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (#‘𝑆)⟩)) = 𝑆)
283, 27eqtrd 2656 1 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(#‘𝑆)))) → (𝑆 splice ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183  cotp 4185  cfv 5888  (class class class)co 6650  0cc0 9936  cuz 11687  ...cfz 12326  #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295   splice csplice 13296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-splice 13304
This theorem is referenced by:  psgnunilem2  17915
  Copyright terms: Public domain W3C validator