MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdid Structured version   Visualization version   GIF version

Theorem swrdid 13428
Description: A word is a subword of itself. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrdid (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨0, (#‘𝑆)⟩) = 𝑆)

Proof of Theorem swrdid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lencl 13324 . . . . 5 (𝑆 ∈ Word 𝐴 → (#‘𝑆) ∈ ℕ0)
2 nn0fz0 12437 . . . . 5 ((#‘𝑆) ∈ ℕ0 ↔ (#‘𝑆) ∈ (0...(#‘𝑆)))
31, 2sylib 208 . . . 4 (𝑆 ∈ Word 𝐴 → (#‘𝑆) ∈ (0...(#‘𝑆)))
4 swrd0f 13427 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (#‘𝑆) ∈ (0...(#‘𝑆))) → (𝑆 substr ⟨0, (#‘𝑆)⟩):(0..^(#‘𝑆))⟶𝐴)
53, 4mpdan 702 . . 3 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨0, (#‘𝑆)⟩):(0..^(#‘𝑆))⟶𝐴)
6 ffn 6045 . . 3 ((𝑆 substr ⟨0, (#‘𝑆)⟩):(0..^(#‘𝑆))⟶𝐴 → (𝑆 substr ⟨0, (#‘𝑆)⟩) Fn (0..^(#‘𝑆)))
75, 6syl 17 . 2 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨0, (#‘𝑆)⟩) Fn (0..^(#‘𝑆)))
8 wrdfn 13319 . 2 (𝑆 ∈ Word 𝐴𝑆 Fn (0..^(#‘𝑆)))
9 simpl 473 . . . 4 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(#‘𝑆))) → 𝑆 ∈ Word 𝐴)
10 0elfz 12436 . . . . . 6 ((#‘𝑆) ∈ ℕ0 → 0 ∈ (0...(#‘𝑆)))
111, 10syl 17 . . . . 5 (𝑆 ∈ Word 𝐴 → 0 ∈ (0...(#‘𝑆)))
1211adantr 481 . . . 4 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(#‘𝑆))) → 0 ∈ (0...(#‘𝑆)))
133adantr 481 . . . 4 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(#‘𝑆))) → (#‘𝑆) ∈ (0...(#‘𝑆)))
141nn0cnd 11353 . . . . . . . 8 (𝑆 ∈ Word 𝐴 → (#‘𝑆) ∈ ℂ)
1514subid1d 10381 . . . . . . 7 (𝑆 ∈ Word 𝐴 → ((#‘𝑆) − 0) = (#‘𝑆))
1615oveq2d 6666 . . . . . 6 (𝑆 ∈ Word 𝐴 → (0..^((#‘𝑆) − 0)) = (0..^(#‘𝑆)))
1716eleq2d 2687 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑥 ∈ (0..^((#‘𝑆) − 0)) ↔ 𝑥 ∈ (0..^(#‘𝑆))))
1817biimpar 502 . . . 4 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(#‘𝑆))) → 𝑥 ∈ (0..^((#‘𝑆) − 0)))
19 swrdfv 13424 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...(#‘𝑆)) ∧ (#‘𝑆) ∈ (0...(#‘𝑆))) ∧ 𝑥 ∈ (0..^((#‘𝑆) − 0))) → ((𝑆 substr ⟨0, (#‘𝑆)⟩)‘𝑥) = (𝑆‘(𝑥 + 0)))
209, 12, 13, 18, 19syl31anc 1329 . . 3 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(#‘𝑆))) → ((𝑆 substr ⟨0, (#‘𝑆)⟩)‘𝑥) = (𝑆‘(𝑥 + 0)))
21 elfzoelz 12470 . . . . . . 7 (𝑥 ∈ (0..^(#‘𝑆)) → 𝑥 ∈ ℤ)
2221zcnd 11483 . . . . . 6 (𝑥 ∈ (0..^(#‘𝑆)) → 𝑥 ∈ ℂ)
2322addid1d 10236 . . . . 5 (𝑥 ∈ (0..^(#‘𝑆)) → (𝑥 + 0) = 𝑥)
2423adantl 482 . . . 4 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(#‘𝑆))) → (𝑥 + 0) = 𝑥)
2524fveq2d 6195 . . 3 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(#‘𝑆))) → (𝑆‘(𝑥 + 0)) = (𝑆𝑥))
2620, 25eqtrd 2656 . 2 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(#‘𝑆))) → ((𝑆 substr ⟨0, (#‘𝑆)⟩)‘𝑥) = (𝑆𝑥))
277, 8, 26eqfnfvd 6314 1 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨0, (#‘𝑆)⟩) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cop 4183   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936   + caddc 9939  cmin 10266  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303
This theorem is referenced by:  wrdcctswrd  13465  swrdccatwrd  13468  wrdeqs1cat  13474  swrdccat3a  13494  swrdccat3b  13496  swrdccatid  13497  splid  13504  splval2  13508  cshw0  13540  efgredleme  18156  efgredlemc  18158  efgcpbllemb  18168  frgpuplem  18185  wrdsplex  30618  pfxid  41392  pfxccatpfx2  41428
  Copyright terms: Public domain W3C validator