MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthonepeq Structured version   Visualization version   GIF version

Theorem spthonepeq 26648
Description: The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 18-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
spthonepeq (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))

Proof of Theorem spthonepeq
StepHypRef Expression
1 eqid 2622 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21spthonprop 26641 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)))
31istrlson 26603 . . . . . 6 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
433adantl1 1217 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
5 isspth 26620 . . . . . 6 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
65a1i 11 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)))
74, 6anbi12d 747 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) ↔ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))))
81wlkonprop 26554 . . . . . . . 8 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
9 wlkcl 26511 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) ∈ ℕ0)
101wlkp 26512 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))
11 df-f1 5893 . . . . . . . . . . . . . . . 16 (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
12 eqeq2 2633 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 ↔ (𝑃‘0) = 𝐵))
13 eqtr3 2643 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(#‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → (𝑃‘(#‘𝐹)) = (𝑃‘0))
14 elnn0uz 11725 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝐹) ∈ ℕ0 ↔ (#‘𝐹) ∈ (ℤ‘0))
15 eluzfz2 12349 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝐹) ∈ (ℤ‘0) → (#‘𝐹) ∈ (0...(#‘𝐹)))
1614, 15sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝐹) ∈ ℕ0 → (#‘𝐹) ∈ (0...(#‘𝐹)))
17 0elfz 12436 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝐹) ∈ ℕ0 → 0 ∈ (0...(#‘𝐹)))
1816, 17jca 554 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝐹) ∈ ℕ0 → ((#‘𝐹) ∈ (0...(#‘𝐹)) ∧ 0 ∈ (0...(#‘𝐹))))
19 f1veqaeq 6514 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((#‘𝐹) ∈ (0...(#‘𝐹)) ∧ 0 ∈ (0...(#‘𝐹)))) → ((𝑃‘(#‘𝐹)) = (𝑃‘0) → (#‘𝐹) = 0))
2018, 19sylan2 491 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) ∧ (#‘𝐹) ∈ ℕ0) → ((𝑃‘(#‘𝐹)) = (𝑃‘0) → (#‘𝐹) = 0))
2120ex 450 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → ((#‘𝐹) ∈ ℕ0 → ((𝑃‘(#‘𝐹)) = (𝑃‘0) → (#‘𝐹) = 0)))
2221com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘(#‘𝐹)) = (𝑃‘0) → ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → (#‘𝐹) = 0)))
2313, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘(#‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → (#‘𝐹) = 0)))
2423expcom 451 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = 𝐵 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → (#‘𝐹) = 0))))
2512, 24syl6bi 243 . . . . . . . . . . . . . . . . 17 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → (#‘𝐹) = 0)))))
2625com15 101 . . . . . . . . . . . . . . . 16 (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (#‘𝐹) = 0)))))
2711, 26sylbir 225 . . . . . . . . . . . . . . 15 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃) → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (#‘𝐹) = 0)))))
2827expcom 451 . . . . . . . . . . . . . 14 (Fun 𝑃 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (#‘𝐹) = 0))))))
2928com15 101 . . . . . . . . . . . . 13 ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (#‘𝐹) = 0))))))
309, 10, 29sylc 65 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (#‘𝐹) = 0)))))
31303imp1 1280 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 → (#‘𝐹) = 0))
32 fveq2 6191 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) = 0 → (𝑃‘(#‘𝐹)) = (𝑃‘0))
3332eqeq1d 2624 . . . . . . . . . . . . . . . 16 ((#‘𝐹) = 0 → ((𝑃‘(#‘𝐹)) = 𝐵 ↔ (𝑃‘0) = 𝐵))
3433anbi2d 740 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵)))
35 eqtr2 2642 . . . . . . . . . . . . . . 15 (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → 𝐴 = 𝐵)
3634, 35syl6bi 243 . . . . . . . . . . . . . 14 ((#‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → 𝐴 = 𝐵))
3736com12 32 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((#‘𝐹) = 0 → 𝐴 = 𝐵))
38373adant1 1079 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((#‘𝐹) = 0 → 𝐴 = 𝐵))
3938adantr 481 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ Fun 𝑃) → ((#‘𝐹) = 0 → 𝐴 = 𝐵))
4031, 39impbid 202 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))
4140ex 450 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
42413ad2ant3 1084 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
438, 42syl 17 . . . . . . 7 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
4443adantld 483 . . . . . 6 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
4544adantr 481 . . . . 5 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
4645imp 445 . . . 4 (((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))
477, 46syl6bi 243 . . 3 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
48473impia 1261 . 2 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))
492, 48syl 17 1 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  ccnv 5113  Fun wfun 5882  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  0cc0 9936  0cn0 11292  cuz 11687  ...cfz 12326  #chash 13117  Vtxcvtx 25874  Walkscwlks 26492  WalksOncwlkson 26493  Trailsctrls 26587  TrailsOnctrlson 26588  SPathscspths 26609  SPathsOncspthson 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-spthson 26615
This theorem is referenced by:  wspthsnonn0vne  26813
  Copyright terms: Public domain W3C validator