MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthonepeq Structured version   Visualization version   Unicode version

Theorem spthonepeq 26648
Description: The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 18-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
spthonepeq  |-  ( F ( A (SPathsOn `  G
) B ) P  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) )

Proof of Theorem spthonepeq
StepHypRef Expression
1 eqid 2622 . . 3  |-  (Vtx `  G )  =  (Vtx
`  G )
21spthonprop 26641 . 2  |-  ( F ( A (SPathsOn `  G
) B ) P  ->  ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F ( A (TrailsOn `  G ) B ) P  /\  F (SPaths `  G ) P ) ) )
31istrlson 26603 . . . . . 6  |-  ( ( ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) )  /\  ( F  e.  _V  /\  P  e.  _V ) )  -> 
( F ( A (TrailsOn `  G ) B ) P  <->  ( F
( A (WalksOn `  G
) B ) P  /\  F (Trails `  G ) P ) ) )
433adantl1 1217 . . . . 5  |-  ( ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( F ( A (TrailsOn `  G ) B ) P  <->  ( F
( A (WalksOn `  G
) B ) P  /\  F (Trails `  G ) P ) ) )
5 isspth 26620 . . . . . 6  |-  ( F (SPaths `  G ) P 
<->  ( F (Trails `  G ) P  /\  Fun  `' P ) )
65a1i 11 . . . . 5  |-  ( ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( F (SPaths `  G ) P  <->  ( F
(Trails `  G ) P  /\  Fun  `' P
) ) )
74, 6anbi12d 747 . . . 4  |-  ( ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( ( F ( A (TrailsOn `  G
) B ) P  /\  F (SPaths `  G ) P )  <-> 
( ( F ( A (WalksOn `  G
) B ) P  /\  F (Trails `  G ) P )  /\  ( F (Trails `  G ) P  /\  Fun  `' P ) ) ) )
81wlkonprop 26554 . . . . . . . 8  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G ) )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) ) )
9 wlkcl 26511 . . . . . . . . . . . . 13  |-  ( F (Walks `  G ) P  ->  ( # `  F
)  e.  NN0 )
101wlkp 26512 . . . . . . . . . . . . 13  |-  ( F (Walks `  G ) P  ->  P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G ) )
11 df-f1 5893 . . . . . . . . . . . . . . . 16  |-  ( P : ( 0 ... ( # `  F
) ) -1-1-> (Vtx `  G )  <->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' P ) )
12 eqeq2 2633 . . . . . . . . . . . . . . . . . 18  |-  ( A  =  B  ->  (
( P `  0
)  =  A  <->  ( P `  0 )  =  B ) )
13 eqtr3 2643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P `  ( # `
 F ) )  =  B  /\  ( P `  0 )  =  B )  ->  ( P `  ( # `  F
) )  =  ( P `  0 ) )
14 elnn0uz 11725 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  F )  e.  NN0  <->  ( # `  F
)  e.  ( ZZ>= ` 
0 ) )
15 eluzfz2 12349 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  F )  e.  ( ZZ>= `  0 )  ->  ( # `  F
)  e.  ( 0 ... ( # `  F
) ) )
1614, 15sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  F )  e.  NN0  ->  ( # `  F
)  e.  ( 0 ... ( # `  F
) ) )
17 0elfz 12436 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  F )  e.  NN0  ->  0  e.  ( 0 ... ( # `
 F ) ) )
1816, 17jca 554 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  F )  e.  NN0  ->  ( ( # `
 F )  e.  ( 0 ... ( # `
 F ) )  /\  0  e.  ( 0 ... ( # `  F ) ) ) )
19 f1veqaeq 6514 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> (Vtx `  G )  /\  (
( # `  F )  e.  ( 0 ... ( # `  F
) )  /\  0  e.  ( 0 ... ( # `
 F ) ) ) )  ->  (
( P `  ( # `
 F ) )  =  ( P ` 
0 )  ->  ( # `
 F )  =  0 ) )
2018, 19sylan2 491 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P : ( 0 ... ( # `  F
) ) -1-1-> (Vtx `  G )  /\  ( # `
 F )  e. 
NN0 )  ->  (
( P `  ( # `
 F ) )  =  ( P ` 
0 )  ->  ( # `
 F )  =  0 ) )
2120ex 450 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P : ( 0 ... ( # `  F
) ) -1-1-> (Vtx `  G )  ->  (
( # `  F )  e.  NN0  ->  ( ( P `  ( # `  F ) )  =  ( P `  0
)  ->  ( # `  F
)  =  0 ) ) )
2221com13 88 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P `  ( # `  F ) )  =  ( P `  0
)  ->  ( ( # `
 F )  e. 
NN0  ->  ( P :
( 0 ... ( # `
 F ) )
-1-1-> (Vtx `  G )  ->  ( # `  F
)  =  0 ) ) )
2313, 22syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P `  ( # `
 F ) )  =  B  /\  ( P `  0 )  =  B )  ->  (
( # `  F )  e.  NN0  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> (Vtx `  G )  ->  ( # `
 F )  =  0 ) ) )
2423expcom 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( P `  0 )  =  B  ->  (
( P `  ( # `
 F ) )  =  B  ->  (
( # `  F )  e.  NN0  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> (Vtx `  G )  ->  ( # `
 F )  =  0 ) ) ) )
2512, 24syl6bi 243 . . . . . . . . . . . . . . . . 17  |-  ( A  =  B  ->  (
( P `  0
)  =  A  -> 
( ( P `  ( # `  F ) )  =  B  -> 
( ( # `  F
)  e.  NN0  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> (Vtx `  G )  ->  ( # `
 F )  =  0 ) ) ) ) )
2625com15 101 . . . . . . . . . . . . . . . 16  |-  ( P : ( 0 ... ( # `  F
) ) -1-1-> (Vtx `  G )  ->  (
( P `  0
)  =  A  -> 
( ( P `  ( # `  F ) )  =  B  -> 
( ( # `  F
)  e.  NN0  ->  ( A  =  B  -> 
( # `  F )  =  0 ) ) ) ) )
2711, 26sylbir 225 . . . . . . . . . . . . . . 15  |-  ( ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  Fun  `' P )  ->  (
( P `  0
)  =  A  -> 
( ( P `  ( # `  F ) )  =  B  -> 
( ( # `  F
)  e.  NN0  ->  ( A  =  B  -> 
( # `  F )  =  0 ) ) ) ) )
2827expcom 451 . . . . . . . . . . . . . 14  |-  ( Fun  `' P  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( P `  0
)  =  A  -> 
( ( P `  ( # `  F ) )  =  B  -> 
( ( # `  F
)  e.  NN0  ->  ( A  =  B  -> 
( # `  F )  =  0 ) ) ) ) ) )
2928com15 101 . . . . . . . . . . . . 13  |-  ( (
# `  F )  e.  NN0  ->  ( P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  ->  (
( P `  0
)  =  A  -> 
( ( P `  ( # `  F ) )  =  B  -> 
( Fun  `' P  ->  ( A  =  B  ->  ( # `  F
)  =  0 ) ) ) ) ) )
309, 10, 29sylc 65 . . . . . . . . . . . 12  |-  ( F (Walks `  G ) P  ->  ( ( P `
 0 )  =  A  ->  ( ( P `  ( # `  F
) )  =  B  ->  ( Fun  `' P  ->  ( A  =  B  ->  ( # `  F
)  =  0 ) ) ) ) )
31303imp1 1280 . . . . . . . . . . 11  |-  ( ( ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  /\  Fun  `' P )  ->  ( A  =  B  ->  (
# `  F )  =  0 ) )
32 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  F )  =  0  ->  ( P `  ( # `  F
) )  =  ( P `  0 ) )
3332eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( (
# `  F )  =  0  ->  (
( P `  ( # `
 F ) )  =  B  <->  ( P `  0 )  =  B ) )
3433anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  0  ->  (
( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B )  <-> 
( ( P ` 
0 )  =  A  /\  ( P ` 
0 )  =  B ) ) )
35 eqtr2 2642 . . . . . . . . . . . . . . 15  |-  ( ( ( P `  0
)  =  A  /\  ( P `  0 )  =  B )  ->  A  =  B )
3634, 35syl6bi 243 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  0  ->  (
( ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B )  ->  A  =  B ) )
3736com12 32 . . . . . . . . . . . . 13  |-  ( ( ( P `  0
)  =  A  /\  ( P `  ( # `  F ) )  =  B )  ->  (
( # `  F )  =  0  ->  A  =  B ) )
38373adant1 1079 . . . . . . . . . . . 12  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( ( # `
 F )  =  0  ->  A  =  B ) )
3938adantr 481 . . . . . . . . . . 11  |-  ( ( ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  /\  Fun  `' P )  ->  (
( # `  F )  =  0  ->  A  =  B ) )
4031, 39impbid 202 . . . . . . . . . 10  |-  ( ( ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  /\  Fun  `' P )  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) )
4140ex 450 . . . . . . . . 9  |-  ( ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B )  ->  ( Fun  `' P  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) ) )
42413ad2ant3 1084 . . . . . . . 8  |-  ( ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  /\  ( F  e.  _V  /\  P  e. 
_V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) )  ->  ( Fun  `' P  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) ) )
438, 42syl 17 . . . . . . 7  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( Fun  `' P  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) ) )
4443adantld 483 . . . . . 6  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( F (Trails `  G ) P  /\  Fun  `' P
)  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) ) )
4544adantr 481 . . . . 5  |-  ( ( F ( A (WalksOn `  G ) B ) P  /\  F (Trails `  G ) P )  ->  ( ( F (Trails `  G ) P  /\  Fun  `' P
)  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) ) )
4645imp 445 . . . 4  |-  ( ( ( F ( A (WalksOn `  G ) B ) P  /\  F (Trails `  G ) P )  /\  ( F (Trails `  G ) P  /\  Fun  `' P
) )  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) )
477, 46syl6bi 243 . . 3  |-  ( ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( ( F ( A (TrailsOn `  G
) B ) P  /\  F (SPaths `  G ) P )  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) ) )
48473impia 1261 . 2  |-  ( ( ( G  e.  _V  /\  A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  /\  ( F  e.  _V  /\  P  e. 
_V )  /\  ( F ( A (TrailsOn `  G ) B ) P  /\  F (SPaths `  G ) P ) )  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) )
492, 48syl 17 1  |-  ( F ( A (SPathsOn `  G
) B ) P  ->  ( A  =  B  <->  ( # `  F
)  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   `'ccnv 5113   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   0cc0 9936   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   #chash 13117  Vtxcvtx 25874  Walkscwlks 26492  WalksOncwlkson 26493  Trailsctrls 26587  TrailsOnctrlson 26588  SPathscspths 26609  SPathsOncspthson 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-spthson 26615
This theorem is referenced by:  wspthsnonn0vne  26813
  Copyright terms: Public domain W3C validator