MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem6 Structured version   Visualization version   GIF version

Theorem sqrlem6 13988
Description: Lemma for 01sqrex 13990. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
Distinct variable groups:   𝑎,𝑏,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem6
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . . 4 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 sqrlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
3 sqrlem5.3 . . . 4 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
41, 2, 3sqrlem5 13987 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
54simprd 479 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < ))
6 vex 3203 . . . . . 6 𝑣 ∈ V
7 eqeq1 2626 . . . . . . 7 (𝑦 = 𝑣 → (𝑦 = (𝑎 · 𝑏) ↔ 𝑣 = (𝑎 · 𝑏)))
872rexbidv 3057 . . . . . 6 (𝑦 = 𝑣 → (∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏) ↔ ∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏)))
96, 8, 3elab2 3354 . . . . 5 (𝑣𝑇 ↔ ∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏))
10 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑥↑2) = (𝑎↑2))
1110breq1d 4663 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑎↑2) ≤ 𝐴))
1211, 1elrab2 3366 . . . . . . . . . . . . . 14 (𝑎𝑆 ↔ (𝑎 ∈ ℝ+ ∧ (𝑎↑2) ≤ 𝐴))
1312simplbi 476 . . . . . . . . . . . . 13 (𝑎𝑆𝑎 ∈ ℝ+)
14 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (𝑥↑2) = (𝑏↑2))
1514breq1d 4663 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑏↑2) ≤ 𝐴))
1615, 1elrab2 3366 . . . . . . . . . . . . . 14 (𝑏𝑆 ↔ (𝑏 ∈ ℝ+ ∧ (𝑏↑2) ≤ 𝐴))
1716simplbi 476 . . . . . . . . . . . . 13 (𝑏𝑆𝑏 ∈ ℝ+)
18 rpre 11839 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
1918adantr 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
20 rpre 11839 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ+𝑏 ∈ ℝ)
2120adantl 482 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
22 rpgt0 11844 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ+ → 0 < 𝑏)
2322adantl 482 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 0 < 𝑏)
24 lemul1 10875 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2519, 21, 21, 23, 24syl112anc 1330 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2613, 17, 25syl2an 494 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2717rpcnd 11874 . . . . . . . . . . . . . . 15 (𝑏𝑆𝑏 ∈ ℂ)
2827sqvald 13005 . . . . . . . . . . . . . 14 (𝑏𝑆 → (𝑏↑2) = (𝑏 · 𝑏))
2928breq2d 4665 . . . . . . . . . . . . 13 (𝑏𝑆 → ((𝑎 · 𝑏) ≤ (𝑏↑2) ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
3029adantl 482 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → ((𝑎 · 𝑏) ≤ (𝑏↑2) ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
3126, 30bitr4d 271 . . . . . . . . . . 11 ((𝑎𝑆𝑏𝑆) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏↑2)))
3231adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏↑2)))
3316simprbi 480 . . . . . . . . . . . 12 (𝑏𝑆 → (𝑏↑2) ≤ 𝐴)
3433ad2antll 765 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏↑2) ≤ 𝐴)
3513rpred 11872 . . . . . . . . . . . . . 14 (𝑎𝑆𝑎 ∈ ℝ)
3617rpred 11872 . . . . . . . . . . . . . 14 (𝑏𝑆𝑏 ∈ ℝ)
37 remulcl 10021 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
3835, 36, 37syl2an 494 . . . . . . . . . . . . 13 ((𝑎𝑆𝑏𝑆) → (𝑎 · 𝑏) ∈ ℝ)
3938adantl 482 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 · 𝑏) ∈ ℝ)
4036resqcld 13035 . . . . . . . . . . . . 13 (𝑏𝑆 → (𝑏↑2) ∈ ℝ)
4140ad2antll 765 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏↑2) ∈ ℝ)
42 rpre 11839 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
4342ad2antrr 762 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → 𝐴 ∈ ℝ)
44 letr 10131 . . . . . . . . . . . 12 (((𝑎 · 𝑏) ∈ ℝ ∧ (𝑏↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑎 · 𝑏) ≤ (𝑏↑2) ∧ (𝑏↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
4539, 41, 43, 44syl3anc 1326 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (((𝑎 · 𝑏) ≤ (𝑏↑2) ∧ (𝑏↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
4634, 45mpan2d 710 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → ((𝑎 · 𝑏) ≤ (𝑏↑2) → (𝑎 · 𝑏) ≤ 𝐴))
4732, 46sylbid 230 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏 → (𝑎 · 𝑏) ≤ 𝐴))
48 rpgt0 11844 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ+ → 0 < 𝑎)
4948adantr 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 0 < 𝑎)
50 lemul2 10876 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5121, 19, 19, 49, 50syl112anc 1330 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5213, 17, 51syl2an 494 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5313rpcnd 11874 . . . . . . . . . . . . . . 15 (𝑎𝑆𝑎 ∈ ℂ)
5453sqvald 13005 . . . . . . . . . . . . . 14 (𝑎𝑆 → (𝑎↑2) = (𝑎 · 𝑎))
5554breq2d 4665 . . . . . . . . . . . . 13 (𝑎𝑆 → ((𝑎 · 𝑏) ≤ (𝑎↑2) ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5655adantr 481 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → ((𝑎 · 𝑏) ≤ (𝑎↑2) ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5752, 56bitr4d 271 . . . . . . . . . . 11 ((𝑎𝑆𝑏𝑆) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎↑2)))
5857adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎↑2)))
5912simprbi 480 . . . . . . . . . . . 12 (𝑎𝑆 → (𝑎↑2) ≤ 𝐴)
6059ad2antrl 764 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎↑2) ≤ 𝐴)
6135resqcld 13035 . . . . . . . . . . . . 13 (𝑎𝑆 → (𝑎↑2) ∈ ℝ)
6261ad2antrl 764 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎↑2) ∈ ℝ)
63 letr 10131 . . . . . . . . . . . 12 (((𝑎 · 𝑏) ∈ ℝ ∧ (𝑎↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑎 · 𝑏) ≤ (𝑎↑2) ∧ (𝑎↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
6439, 62, 43, 63syl3anc 1326 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (((𝑎 · 𝑏) ≤ (𝑎↑2) ∧ (𝑎↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
6560, 64mpan2d 710 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → ((𝑎 · 𝑏) ≤ (𝑎↑2) → (𝑎 · 𝑏) ≤ 𝐴))
6658, 65sylbid 230 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏𝑎 → (𝑎 · 𝑏) ≤ 𝐴))
671, 2sqrlem3 13985 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑣𝑆 𝑣𝑦))
6867simp1d 1073 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝑆 ⊆ ℝ)
6968sseld 3602 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑎𝑆𝑎 ∈ ℝ))
7068sseld 3602 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑏𝑆𝑏 ∈ ℝ))
7169, 70anim12d 586 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)))
7271imp 445 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
73 letric 10137 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎𝑏𝑏𝑎))
7472, 73syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏𝑏𝑎))
7547, 66, 74mpjaod 396 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 · 𝑏) ≤ 𝐴)
7675ex 450 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑎 · 𝑏) ≤ 𝐴))
77 breq1 4656 . . . . . . . 8 (𝑣 = (𝑎 · 𝑏) → (𝑣𝐴 ↔ (𝑎 · 𝑏) ≤ 𝐴))
7877biimprcd 240 . . . . . . 7 ((𝑎 · 𝑏) ≤ 𝐴 → (𝑣 = (𝑎 · 𝑏) → 𝑣𝐴))
7976, 78syl6 35 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑣 = (𝑎 · 𝑏) → 𝑣𝐴)))
8079rexlimdvv 3037 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏) → 𝑣𝐴))
819, 80syl5bi 232 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑣𝑇𝑣𝐴))
8281ralrimiv 2965 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑣𝑇 𝑣𝐴)
834simpld 475 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
8442adantr 481 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
85 suprleub 10989 . . . 4 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ 𝐴 ∈ ℝ) → (sup(𝑇, ℝ, < ) ≤ 𝐴 ↔ ∀𝑣𝑇 𝑣𝐴))
8683, 84, 85syl2anc 693 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑇, ℝ, < ) ≤ 𝐴 ↔ ∀𝑣𝑇 𝑣𝐴))
8782, 86mpbird 247 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑇, ℝ, < ) ≤ 𝐴)
885, 87eqbrtrd 4675 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  (class class class)co 6650  supcsup 8346  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075  2c2 11070  +crp 11832  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861
This theorem is referenced by:  sqrlem7  13989
  Copyright terms: Public domain W3C validator