| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > summolem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for summo 14448. (Contributed by Mario Carneiro, 29-Mar-2014.) |
| Ref | Expression |
|---|---|
| summo.1 |
|
| summo.2 |
|
| summo.3 |
|
| summolem3.4 |
|
| summolem3.5 |
|
| summolem3.6 |
|
| summolem3.7 |
|
| Ref | Expression |
|---|---|
| summolem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl 10018 |
. . . 4
| |
| 2 | 1 | adantl 482 |
. . 3
|
| 3 | addcom 10222 |
. . . 4
| |
| 4 | 3 | adantl 482 |
. . 3
|
| 5 | addass 10023 |
. . . 4
| |
| 6 | 5 | adantl 482 |
. . 3
|
| 7 | summolem3.5 |
. . . . 5
| |
| 8 | 7 | simpld 475 |
. . . 4
|
| 9 | nnuz 11723 |
. . . 4
| |
| 10 | 8, 9 | syl6eleq 2711 |
. . 3
|
| 11 | ssid 3624 |
. . . 4
| |
| 12 | 11 | a1i 11 |
. . 3
|
| 13 | summolem3.6 |
. . . . . 6
| |
| 14 | f1ocnv 6149 |
. . . . . 6
| |
| 15 | 13, 14 | syl 17 |
. . . . 5
|
| 16 | summolem3.7 |
. . . . 5
| |
| 17 | f1oco 6159 |
. . . . 5
| |
| 18 | 15, 16, 17 | syl2anc 693 |
. . . 4
|
| 19 | ovex 6678 |
. . . . . . . . . 10
| |
| 20 | 19 | f1oen 7976 |
. . . . . . . . 9
|
| 21 | 18, 20 | syl 17 |
. . . . . . . 8
|
| 22 | fzfi 12771 |
. . . . . . . . 9
| |
| 23 | fzfi 12771 |
. . . . . . . . 9
| |
| 24 | hashen 13135 |
. . . . . . . . 9
| |
| 25 | 22, 23, 24 | mp2an 708 |
. . . . . . . 8
|
| 26 | 21, 25 | sylibr 224 |
. . . . . . 7
|
| 27 | 7 | simprd 479 |
. . . . . . . 8
|
| 28 | nnnn0 11299 |
. . . . . . . 8
| |
| 29 | hashfz1 13134 |
. . . . . . . 8
| |
| 30 | 27, 28, 29 | 3syl 18 |
. . . . . . 7
|
| 31 | nnnn0 11299 |
. . . . . . . 8
| |
| 32 | hashfz1 13134 |
. . . . . . . 8
| |
| 33 | 8, 31, 32 | 3syl 18 |
. . . . . . 7
|
| 34 | 26, 30, 33 | 3eqtr3rd 2665 |
. . . . . 6
|
| 35 | 34 | oveq2d 6666 |
. . . . 5
|
| 36 | f1oeq2 6128 |
. . . . 5
| |
| 37 | 35, 36 | syl 17 |
. . . 4
|
| 38 | 18, 37 | mpbird 247 |
. . 3
|
| 39 | elfznn 12370 |
. . . . . 6
| |
| 40 | 39 | adantl 482 |
. . . . 5
|
| 41 | f1of 6137 |
. . . . . . . 8
| |
| 42 | 13, 41 | syl 17 |
. . . . . . 7
|
| 43 | 42 | ffvelrnda 6359 |
. . . . . 6
|
| 44 | summo.2 |
. . . . . . . 8
| |
| 45 | 44 | ralrimiva 2966 |
. . . . . . 7
|
| 46 | 45 | adantr 481 |
. . . . . 6
|
| 47 | nfcsb1v 3549 |
. . . . . . . 8
| |
| 48 | 47 | nfel1 2779 |
. . . . . . 7
|
| 49 | csbeq1a 3542 |
. . . . . . . 8
| |
| 50 | 49 | eleq1d 2686 |
. . . . . . 7
|
| 51 | 48, 50 | rspc 3303 |
. . . . . 6
|
| 52 | 43, 46, 51 | sylc 65 |
. . . . 5
|
| 53 | fveq2 6191 |
. . . . . . 7
| |
| 54 | 53 | csbeq1d 3540 |
. . . . . 6
|
| 55 | summo.3 |
. . . . . 6
| |
| 56 | 54, 55 | fvmptg 6280 |
. . . . 5
|
| 57 | 40, 52, 56 | syl2anc 693 |
. . . 4
|
| 58 | 57, 52 | eqeltrd 2701 |
. . 3
|
| 59 | f1oeq2 6128 |
. . . . . . . . . . . 12
| |
| 60 | 35, 59 | syl 17 |
. . . . . . . . . . 11
|
| 61 | 16, 60 | mpbird 247 |
. . . . . . . . . 10
|
| 62 | f1of 6137 |
. . . . . . . . . 10
| |
| 63 | 61, 62 | syl 17 |
. . . . . . . . 9
|
| 64 | fvco3 6275 |
. . . . . . . . 9
| |
| 65 | 63, 64 | sylan 488 |
. . . . . . . 8
|
| 66 | 65 | fveq2d 6195 |
. . . . . . 7
|
| 67 | 13 | adantr 481 |
. . . . . . . 8
|
| 68 | 63 | ffvelrnda 6359 |
. . . . . . . 8
|
| 69 | f1ocnvfv2 6533 |
. . . . . . . 8
| |
| 70 | 67, 68, 69 | syl2anc 693 |
. . . . . . 7
|
| 71 | 66, 70 | eqtr2d 2657 |
. . . . . 6
|
| 72 | 71 | csbeq1d 3540 |
. . . . 5
|
| 73 | 72 | fveq2d 6195 |
. . . 4
|
| 74 | elfznn 12370 |
. . . . . 6
| |
| 75 | 74 | adantl 482 |
. . . . 5
|
| 76 | fveq2 6191 |
. . . . . . 7
| |
| 77 | 76 | csbeq1d 3540 |
. . . . . 6
|
| 78 | summolem3.4 |
. . . . . 6
| |
| 79 | 77, 78 | fvmpti 6281 |
. . . . 5
|
| 80 | 75, 79 | syl 17 |
. . . 4
|
| 81 | f1of 6137 |
. . . . . . 7
| |
| 82 | 38, 81 | syl 17 |
. . . . . 6
|
| 83 | 82 | ffvelrnda 6359 |
. . . . 5
|
| 84 | elfznn 12370 |
. . . . 5
| |
| 85 | fveq2 6191 |
. . . . . . 7
| |
| 86 | 85 | csbeq1d 3540 |
. . . . . 6
|
| 87 | 86, 55 | fvmpti 6281 |
. . . . 5
|
| 88 | 83, 84, 87 | 3syl 18 |
. . . 4
|
| 89 | 73, 80, 88 | 3eqtr4d 2666 |
. . 3
|
| 90 | 2, 4, 6, 10, 12, 38, 58, 89 | seqf1o 12842 |
. 2
|
| 91 | 34 | fveq2d 6195 |
. 2
|
| 92 | 90, 91 | eqtr3d 2658 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 |
| This theorem is referenced by: summolem2a 14446 summo 14448 |
| Copyright terms: Public domain | W3C validator |