![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suprzub | Structured version Visualization version GIF version |
Description: The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) |
Ref | Expression |
---|---|
suprzub | ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1063 | . . 3 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
2 | ltso 10118 | . . . . 5 ⊢ < Or ℝ | |
3 | 2 | a1i 11 | . . . 4 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → < Or ℝ) |
4 | simp1 1061 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐴 ⊆ ℤ) | |
5 | zssre 11384 | . . . . . 6 ⊢ ℤ ⊆ ℝ | |
6 | 4, 5 | syl6ss 3615 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
7 | ne0i 3921 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ ∅) |
9 | simp2 1062 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
10 | zsupss 11777 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
11 | 4, 8, 9, 10 | syl3anc 1326 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
12 | ssrexv 3667 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) | |
13 | 6, 11, 12 | sylc 65 | . . . 4 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
14 | 3, 13 | supub 8365 | . . 3 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵)) |
15 | 1, 14 | mpd 15 | . 2 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → ¬ sup(𝐴, ℝ, < ) < 𝐵) |
16 | 6, 1 | sseldd 3604 | . . 3 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ℝ) |
17 | suprzcl2 11778 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) | |
18 | 4, 8, 9, 17 | syl3anc 1326 | . . . 4 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
19 | 6, 18 | sseldd 3604 | . . 3 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ) |
20 | 16, 19 | lenltd 10183 | . 2 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ¬ sup(𝐴, ℝ, < ) < 𝐵)) |
21 | 15, 20 | mpbird 247 | 1 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 ∅c0 3915 class class class wbr 4653 Or wor 5034 supcsup 8346 ℝcr 9935 < clt 10074 ≤ cle 10075 ℤcz 11377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 |
This theorem is referenced by: gcdcllem3 15223 pcprendvds 15545 pcpremul 15548 prmreclem1 15620 0ram 15724 gexex 18256 fourierdlem25 40349 |
Copyright terms: Public domain | W3C validator |