Proof of Theorem uzsupss
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1064 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ ℤ) |
| 2 | | uzid 11702 |
. . . . 5
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | | uzsupss.1 |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 5 | 3, 4 | syl6eleqr 2712 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ 𝑍) |
| 6 | | ral0 4076 |
. . . 4
⊢
∀𝑦 ∈
∅ ¬ 𝑀 < 𝑦 |
| 7 | | simpr 477 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 = ∅) → 𝐴 = ∅) |
| 8 | 7 | raleqdv 3144 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 = ∅) → (∀𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑀 < 𝑦)) |
| 9 | 6, 8 | mpbiri 248 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 = ∅) → ∀𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦) |
| 10 | | eluzle 11700 |
. . . . . . . 8
⊢ (𝑦 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑦) |
| 11 | | eluzel2 11692 |
. . . . . . . . 9
⊢ (𝑦 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 12 | | eluzelz 11697 |
. . . . . . . . 9
⊢ (𝑦 ∈
(ℤ≥‘𝑀) → 𝑦 ∈ ℤ) |
| 13 | | zre 11381 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 14 | | zre 11381 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℝ) |
| 15 | | lenlt 10116 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑀 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑀)) |
| 16 | 13, 14, 15 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑀 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑀)) |
| 17 | 11, 12, 16 | syl2anc 693 |
. . . . . . . 8
⊢ (𝑦 ∈
(ℤ≥‘𝑀) → (𝑀 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑀)) |
| 18 | 10, 17 | mpbid 222 |
. . . . . . 7
⊢ (𝑦 ∈
(ℤ≥‘𝑀) → ¬ 𝑦 < 𝑀) |
| 19 | 18, 4 | eleq2s 2719 |
. . . . . 6
⊢ (𝑦 ∈ 𝑍 → ¬ 𝑦 < 𝑀) |
| 20 | 19 | pm2.21d 118 |
. . . . 5
⊢ (𝑦 ∈ 𝑍 → (𝑦 < 𝑀 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
| 21 | 20 | rgen 2922 |
. . . 4
⊢
∀𝑦 ∈
𝑍 (𝑦 < 𝑀 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) |
| 22 | 21 | a1i 11 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 = ∅) → ∀𝑦 ∈ 𝑍 (𝑦 < 𝑀 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
| 23 | | breq1 4656 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝑥 < 𝑦 ↔ 𝑀 < 𝑦)) |
| 24 | 23 | notbid 308 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑀 < 𝑦)) |
| 25 | 24 | ralbidv 2986 |
. . . . 5
⊢ (𝑥 = 𝑀 → (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦)) |
| 26 | | breq2 4657 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑀)) |
| 27 | 26 | imbi1d 331 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑀 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 28 | 27 | ralbidv 2986 |
. . . . 5
⊢ (𝑥 = 𝑀 → (∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑀 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 29 | 25, 28 | anbi12d 747 |
. . . 4
⊢ (𝑥 = 𝑀 → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑀 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 30 | 29 | rspcev 3309 |
. . 3
⊢ ((𝑀 ∈ 𝑍 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑀 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ 𝑍 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 31 | 5, 9, 22, 30 | syl12anc 1324 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 = ∅) → ∃𝑥 ∈ 𝑍 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 32 | | simpl2 1065 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝑍) |
| 33 | | uzssz 11707 |
. . . . . 6
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 34 | 4, 33 | eqsstri 3635 |
. . . . 5
⊢ 𝑍 ⊆
ℤ |
| 35 | 32, 34 | syl6ss 3615 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℤ) |
| 36 | | simpr 477 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) |
| 37 | | simpl3 1066 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 38 | | zsupss 11777 |
. . . 4
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 39 | 35, 36, 37, 38 | syl3anc 1326 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 40 | | ssrexv 3667 |
. . 3
⊢ (𝐴 ⊆ 𝑍 → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ 𝑍 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 41 | 32, 39, 40 | sylc 65 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝑍 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 42 | 31, 41 | pm2.61dane 2881 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝑍 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |