| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 3687 |
. . 3
⊢ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆
ℕ |
| 2 | | breq2 4657 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑟↑2) ∥ 𝑛 ↔ (𝑟↑2) ∥ 𝑁)) |
| 3 | 2 | rabbidv 3189 |
. . . . . 6
⊢ (𝑛 = 𝑁 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) |
| 4 | 3 | supeq1d 8352 |
. . . . 5
⊢ (𝑛 = 𝑁 → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
| 5 | | prmreclem1.1 |
. . . . 5
⊢ 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, <
)) |
| 6 | | ltso 10118 |
. . . . . 6
⊢ < Or
ℝ |
| 7 | 6 | supex 8369 |
. . . . 5
⊢
sup({𝑟 ∈
ℕ ∣ (𝑟↑2)
∥ 𝑁}, ℝ, < )
∈ V |
| 8 | 4, 5, 7 | fvmpt 6282 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑄‘𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
| 9 | | nnssz 11397 |
. . . . . . 7
⊢ ℕ
⊆ ℤ |
| 10 | 1, 9 | sstri 3612 |
. . . . . 6
⊢ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆
ℤ |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℕ → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆
ℤ) |
| 12 | | 1nn 11031 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
| 13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 1 ∈
ℕ) |
| 14 | | nnz 11399 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 15 | | 1dvds 14996 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → 1 ∥
𝑁) |
| 16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 1 ∥
𝑁) |
| 17 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑟 = 1 → (𝑟↑2) = (1↑2)) |
| 18 | | sq1 12958 |
. . . . . . . . . 10
⊢
(1↑2) = 1 |
| 19 | 17, 18 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑟 = 1 → (𝑟↑2) = 1) |
| 20 | 19 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑟 = 1 → ((𝑟↑2) ∥ 𝑁 ↔ 1 ∥ 𝑁)) |
| 21 | 20 | elrab 3363 |
. . . . . . 7
⊢ (1 ∈
{𝑟 ∈ ℕ ∣
(𝑟↑2) ∥ 𝑁} ↔ (1 ∈ ℕ ∧
1 ∥ 𝑁)) |
| 22 | 13, 16, 21 | sylanbrc 698 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 1 ∈
{𝑟 ∈ ℕ ∣
(𝑟↑2) ∥ 𝑁}) |
| 23 | | ne0i 3921 |
. . . . . 6
⊢ (1 ∈
{𝑟 ∈ ℕ ∣
(𝑟↑2) ∥ 𝑁} → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅) |
| 24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅) |
| 25 | | nnz 11399 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℤ) |
| 26 | | zsqcl 12934 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℤ → (𝑧↑2) ∈
ℤ) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℕ → (𝑧↑2) ∈
ℤ) |
| 28 | | id 22 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
| 29 | | dvdsle 15032 |
. . . . . . . . . 10
⊢ (((𝑧↑2) ∈ ℤ ∧
𝑁 ∈ ℕ) →
((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁)) |
| 30 | 27, 28, 29 | syl2anr 495 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁)) |
| 31 | | nnlesq 12968 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ≤ (𝑧↑2)) |
| 32 | 31 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ≤ (𝑧↑2)) |
| 33 | | nnre 11027 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℝ) |
| 34 | 33 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ∈
ℝ) |
| 35 | 34 | resqcld 13035 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧↑2) ∈
ℝ) |
| 36 | | nnre 11027 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 37 | 36 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑁 ∈
ℝ) |
| 38 | | letr 10131 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ (𝑧↑2) ∈ ℝ ∧
𝑁 ∈ ℝ) →
((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧 ≤ 𝑁)) |
| 39 | 34, 35, 37, 38 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧 ≤ 𝑁)) |
| 40 | 32, 39 | mpand 711 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ≤ 𝑁 → 𝑧 ≤ 𝑁)) |
| 41 | 30, 40 | syld 47 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → 𝑧 ≤ 𝑁)) |
| 42 | 41 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
∀𝑧 ∈ ℕ
((𝑧↑2) ∥ 𝑁 → 𝑧 ≤ 𝑁)) |
| 43 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑟 = 𝑧 → (𝑟↑2) = (𝑧↑2)) |
| 44 | 43 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑟 = 𝑧 → ((𝑟↑2) ∥ 𝑁 ↔ (𝑧↑2) ∥ 𝑁)) |
| 45 | 44 | ralrab 3368 |
. . . . . . 7
⊢
(∀𝑧 ∈
{𝑟 ∈ ℕ ∣
(𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑁 ↔ ∀𝑧 ∈ ℕ ((𝑧↑2) ∥ 𝑁 → 𝑧 ≤ 𝑁)) |
| 46 | 42, 45 | sylibr 224 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑁) |
| 47 | | breq2 4657 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 𝑁)) |
| 48 | 47 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥 ↔ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑁)) |
| 49 | 48 | rspcev 3309 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑁) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥) |
| 50 | 14, 46, 49 | syl2anc 693 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
∃𝑥 ∈ ℤ
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥) |
| 51 | | suprzcl2 11778 |
. . . . 5
⊢ (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅ ∧
∃𝑥 ∈ ℤ
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥) → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) |
| 52 | 11, 24, 50, 51 | syl3anc 1326 |
. . . 4
⊢ (𝑁 ∈ ℕ →
sup({𝑟 ∈ ℕ
∣ (𝑟↑2) ∥
𝑁}, ℝ, < ) ∈
{𝑟 ∈ ℕ ∣
(𝑟↑2) ∥ 𝑁}) |
| 53 | 8, 52 | eqeltrd 2701 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑄‘𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) |
| 54 | 1, 53 | sseldi 3601 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑄‘𝑁) ∈ ℕ) |
| 55 | | oveq1 6657 |
. . . . . 6
⊢ (𝑧 = (𝑄‘𝑁) → (𝑧↑2) = ((𝑄‘𝑁)↑2)) |
| 56 | 55 | breq1d 4663 |
. . . . 5
⊢ (𝑧 = (𝑄‘𝑁) → ((𝑧↑2) ∥ 𝑁 ↔ ((𝑄‘𝑁)↑2) ∥ 𝑁)) |
| 57 | 44 | cbvrabv 3199 |
. . . . 5
⊢ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} = {𝑧 ∈ ℕ ∣ (𝑧↑2) ∥ 𝑁} |
| 58 | 56, 57 | elrab2 3366 |
. . . 4
⊢ ((𝑄‘𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ ((𝑄‘𝑁) ∈ ℕ ∧ ((𝑄‘𝑁)↑2) ∥ 𝑁)) |
| 59 | 53, 58 | sylib 208 |
. . 3
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁) ∈ ℕ ∧ ((𝑄‘𝑁)↑2) ∥ 𝑁)) |
| 60 | 59 | simprd 479 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁)↑2) ∥ 𝑁) |
| 61 | 54 | adantr 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (𝑄‘𝑁) ∈ ℕ) |
| 62 | 61 | nncnd 11036 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (𝑄‘𝑁) ∈ ℂ) |
| 63 | 62 | mulid1d 10057 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) · 1) = (𝑄‘𝑁)) |
| 64 | | eluz2b2 11761 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘2) ↔ (𝐾 ∈ ℕ ∧ 1 < 𝐾)) |
| 65 | 64 | simprbi 480 |
. . . . . . . 8
⊢ (𝐾 ∈
(ℤ≥‘2) → 1 < 𝐾) |
| 66 | 65 | adantl 482 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 1 < 𝐾) |
| 67 | | 1red 10055 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 1 ∈ ℝ) |
| 68 | | eluz2nn 11726 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(ℤ≥‘2) → 𝐾 ∈ ℕ) |
| 69 | 68 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 𝐾 ∈ ℕ) |
| 70 | 69 | nnred 11035 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 𝐾 ∈ ℝ) |
| 71 | 61 | nnred 11035 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (𝑄‘𝑁) ∈ ℝ) |
| 72 | 61 | nngt0d 11064 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 0 < (𝑄‘𝑁)) |
| 73 | | ltmul2 10874 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝐾
∈ ℝ ∧ ((𝑄‘𝑁) ∈ ℝ ∧ 0 < (𝑄‘𝑁))) → (1 < 𝐾 ↔ ((𝑄‘𝑁) · 1) < ((𝑄‘𝑁) · 𝐾))) |
| 74 | 67, 70, 71, 72, 73 | syl112anc 1330 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (1 < 𝐾 ↔ ((𝑄‘𝑁) · 1) < ((𝑄‘𝑁) · 𝐾))) |
| 75 | 66, 74 | mpbid 222 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) · 1) < ((𝑄‘𝑁) · 𝐾)) |
| 76 | 63, 75 | eqbrtrrd 4677 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (𝑄‘𝑁) < ((𝑄‘𝑁) · 𝐾)) |
| 77 | | nnmulcl 11043 |
. . . . . . . 8
⊢ (((𝑄‘𝑁) ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑄‘𝑁) · 𝐾) ∈ ℕ) |
| 78 | 54, 68, 77 | syl2an 494 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) · 𝐾) ∈ ℕ) |
| 79 | 78 | nnred 11035 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) · 𝐾) ∈ ℝ) |
| 80 | 71, 79 | ltnled 10184 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) < ((𝑄‘𝑁) · 𝐾) ↔ ¬ ((𝑄‘𝑁) · 𝐾) ≤ (𝑄‘𝑁))) |
| 81 | 76, 80 | mpbid 222 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ¬ ((𝑄‘𝑁) · 𝐾) ≤ (𝑄‘𝑁)) |
| 82 | 10 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ) |
| 83 | 50 | ad2antrr 762 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥) |
| 84 | 78 | adantr 481 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁) · 𝐾) ∈ ℕ) |
| 85 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) |
| 86 | 69 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → 𝐾 ∈ ℕ) |
| 87 | 86 | nnsqcld 13029 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝐾↑2) ∈ ℕ) |
| 88 | | nnz 11399 |
. . . . . . . . . . 11
⊢ ((𝐾↑2) ∈ ℕ →
(𝐾↑2) ∈
ℤ) |
| 89 | 87, 88 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝐾↑2) ∈ ℤ) |
| 90 | 54 | nnsqcld 13029 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁)↑2) ∈ ℕ) |
| 91 | 9, 90 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁)↑2) ∈ ℤ) |
| 92 | 90 | nnne0d 11065 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁)↑2) ≠ 0) |
| 93 | | dvdsval2 14986 |
. . . . . . . . . . . . 13
⊢ ((((𝑄‘𝑁)↑2) ∈ ℤ ∧ ((𝑄‘𝑁)↑2) ≠ 0 ∧ 𝑁 ∈ ℤ) → (((𝑄‘𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ)) |
| 94 | 91, 92, 14, 93 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (((𝑄‘𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ)) |
| 95 | 60, 94 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ) |
| 96 | 95 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ) |
| 97 | 91 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁)↑2) ∈ ℤ) |
| 98 | | dvdscmul 15008 |
. . . . . . . . . 10
⊢ (((𝐾↑2) ∈ ℤ ∧
(𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ ∧ ((𝑄‘𝑁)↑2) ∈ ℤ) → ((𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2)) → (((𝑄‘𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄‘𝑁)↑2) · (𝑁 / ((𝑄‘𝑁)↑2))))) |
| 99 | 89, 96, 97, 98 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2)) → (((𝑄‘𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄‘𝑁)↑2) · (𝑁 / ((𝑄‘𝑁)↑2))))) |
| 100 | 85, 99 | mpd 15 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄‘𝑁)↑2) · (𝑁 / ((𝑄‘𝑁)↑2)))) |
| 101 | 62 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝑄‘𝑁) ∈ ℂ) |
| 102 | 86 | nncnd 11036 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → 𝐾 ∈ ℂ) |
| 103 | 101, 102 | sqmuld 13020 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁) · 𝐾)↑2) = (((𝑄‘𝑁)↑2) · (𝐾↑2))) |
| 104 | 103 | eqcomd 2628 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁)↑2) · (𝐾↑2)) = (((𝑄‘𝑁) · 𝐾)↑2)) |
| 105 | | nncn 11028 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 106 | 105 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → 𝑁 ∈ ℂ) |
| 107 | 90 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁)↑2) ∈ ℕ) |
| 108 | 107 | nncnd 11036 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁)↑2) ∈ ℂ) |
| 109 | 92 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁)↑2) ≠ 0) |
| 110 | 106, 108,
109 | divcan2d 10803 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁)↑2) · (𝑁 / ((𝑄‘𝑁)↑2))) = 𝑁) |
| 111 | 100, 104,
110 | 3brtr3d 4684 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁) · 𝐾)↑2) ∥ 𝑁) |
| 112 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑟 = ((𝑄‘𝑁) · 𝐾) → (𝑟↑2) = (((𝑄‘𝑁) · 𝐾)↑2)) |
| 113 | 112 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑟 = ((𝑄‘𝑁) · 𝐾) → ((𝑟↑2) ∥ 𝑁 ↔ (((𝑄‘𝑁) · 𝐾)↑2) ∥ 𝑁)) |
| 114 | 113 | elrab 3363 |
. . . . . . 7
⊢ (((𝑄‘𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ (((𝑄‘𝑁) · 𝐾) ∈ ℕ ∧ (((𝑄‘𝑁) · 𝐾)↑2) ∥ 𝑁)) |
| 115 | 84, 111, 114 | sylanbrc 698 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) |
| 116 | | suprzub 11779 |
. . . . . 6
⊢ (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧
∃𝑥 ∈ ℤ
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥 ∧ ((𝑄‘𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) → ((𝑄‘𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
| 117 | 82, 83, 115, 116 | syl3anc 1326 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
| 118 | 8 | ad2antrr 762 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝑄‘𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
| 119 | 117, 118 | breqtrrd 4681 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁) · 𝐾) ≤ (𝑄‘𝑁)) |
| 120 | 81, 119 | mtand 691 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) |
| 121 | 120 | ex 450 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐾 ∈
(ℤ≥‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2)))) |
| 122 | 54, 60, 121 | 3jca 1242 |
1
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁) ∈ ℕ ∧ ((𝑄‘𝑁)↑2) ∥ 𝑁 ∧ (𝐾 ∈ (ℤ≥‘2)
→ ¬ (𝐾↑2)
∥ (𝑁 / ((𝑄‘𝑁)↑2))))) |