MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem1 Structured version   Visualization version   GIF version

Theorem prmreclem1 15620
Description: Lemma for prmrec 15626. Properties of the "square part" function, which extracts the 𝑚 of the decomposition 𝑁 = 𝑟𝑚↑2, with 𝑚 maximal and 𝑟 squarefree. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypothesis
Ref Expression
prmreclem1.1 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
Assertion
Ref Expression
prmreclem1 (𝑁 ∈ ℕ → ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁 ∧ (𝐾 ∈ (ℤ‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))))
Distinct variable groups:   𝐾,𝑟   𝑛,𝑟,𝑁   𝑄,𝑟
Allowed substitution hints:   𝑄(𝑛)   𝐾(𝑛)

Proof of Theorem prmreclem1
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . 3 {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℕ
2 breq2 4657 . . . . . . 7 (𝑛 = 𝑁 → ((𝑟↑2) ∥ 𝑛 ↔ (𝑟↑2) ∥ 𝑁))
32rabbidv 3189 . . . . . 6 (𝑛 = 𝑁 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
43supeq1d 8352 . . . . 5 (𝑛 = 𝑁 → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
5 prmreclem1.1 . . . . 5 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
6 ltso 10118 . . . . . 6 < Or ℝ
76supex 8369 . . . . 5 sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ V
84, 5, 7fvmpt 6282 . . . 4 (𝑁 ∈ ℕ → (𝑄𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
9 nnssz 11397 . . . . . . 7 ℕ ⊆ ℤ
101, 9sstri 3612 . . . . . 6 {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ
1110a1i 11 . . . . 5 (𝑁 ∈ ℕ → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ)
12 1nn 11031 . . . . . . . 8 1 ∈ ℕ
1312a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℕ)
14 nnz 11399 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
15 1dvds 14996 . . . . . . . 8 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1614, 15syl 17 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∥ 𝑁)
17 oveq1 6657 . . . . . . . . . 10 (𝑟 = 1 → (𝑟↑2) = (1↑2))
18 sq1 12958 . . . . . . . . . 10 (1↑2) = 1
1917, 18syl6eq 2672 . . . . . . . . 9 (𝑟 = 1 → (𝑟↑2) = 1)
2019breq1d 4663 . . . . . . . 8 (𝑟 = 1 → ((𝑟↑2) ∥ 𝑁 ↔ 1 ∥ 𝑁))
2120elrab 3363 . . . . . . 7 (1 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁))
2213, 16, 21sylanbrc 698 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
23 ne0i 3921 . . . . . 6 (1 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅)
2422, 23syl 17 . . . . 5 (𝑁 ∈ ℕ → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅)
25 nnz 11399 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
26 zsqcl 12934 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
2725, 26syl 17 . . . . . . . . . 10 (𝑧 ∈ ℕ → (𝑧↑2) ∈ ℤ)
28 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
29 dvdsle 15032 . . . . . . . . . 10 (((𝑧↑2) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁))
3027, 28, 29syl2anr 495 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁))
31 nnlesq 12968 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ≤ (𝑧↑2))
3231adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ≤ (𝑧↑2))
33 nnre 11027 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
3433adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ∈ ℝ)
3534resqcld 13035 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧↑2) ∈ ℝ)
36 nnre 11027 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3736adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑁 ∈ ℝ)
38 letr 10131 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ (𝑧↑2) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧𝑁))
3934, 35, 37, 38syl3anc 1326 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧𝑁))
4032, 39mpand 711 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ≤ 𝑁𝑧𝑁))
4130, 40syld 47 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁𝑧𝑁))
4241ralrimiva 2966 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑧 ∈ ℕ ((𝑧↑2) ∥ 𝑁𝑧𝑁))
43 oveq1 6657 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑟↑2) = (𝑧↑2))
4443breq1d 4663 . . . . . . . 8 (𝑟 = 𝑧 → ((𝑟↑2) ∥ 𝑁 ↔ (𝑧↑2) ∥ 𝑁))
4544ralrab 3368 . . . . . . 7 (∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁 ↔ ∀𝑧 ∈ ℕ ((𝑧↑2) ∥ 𝑁𝑧𝑁))
4642, 45sylibr 224 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁)
47 breq2 4657 . . . . . . . 8 (𝑥 = 𝑁 → (𝑧𝑥𝑧𝑁))
4847ralbidv 2986 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥 ↔ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁))
4948rspcev 3309 . . . . . 6 ((𝑁 ∈ ℤ ∧ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥)
5014, 46, 49syl2anc 693 . . . . 5 (𝑁 ∈ ℕ → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥)
51 suprzcl2 11778 . . . . 5 (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥) → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
5211, 24, 50, 51syl3anc 1326 . . . 4 (𝑁 ∈ ℕ → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
538, 52eqeltrd 2701 . . 3 (𝑁 ∈ ℕ → (𝑄𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
541, 53sseldi 3601 . 2 (𝑁 ∈ ℕ → (𝑄𝑁) ∈ ℕ)
55 oveq1 6657 . . . . . 6 (𝑧 = (𝑄𝑁) → (𝑧↑2) = ((𝑄𝑁)↑2))
5655breq1d 4663 . . . . 5 (𝑧 = (𝑄𝑁) → ((𝑧↑2) ∥ 𝑁 ↔ ((𝑄𝑁)↑2) ∥ 𝑁))
5744cbvrabv 3199 . . . . 5 {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} = {𝑧 ∈ ℕ ∣ (𝑧↑2) ∥ 𝑁}
5856, 57elrab2 3366 . . . 4 ((𝑄𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁))
5953, 58sylib 208 . . 3 (𝑁 ∈ ℕ → ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁))
6059simprd 479 . 2 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ∥ 𝑁)
6154adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) ∈ ℕ)
6261nncnd 11036 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) ∈ ℂ)
6362mulid1d 10057 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 1) = (𝑄𝑁))
64 eluz2b2 11761 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℕ ∧ 1 < 𝐾))
6564simprbi 480 . . . . . . . 8 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
6665adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 1 < 𝐾)
67 1red 10055 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 1 ∈ ℝ)
68 eluz2nn 11726 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
6968adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ)
7069nnred 11035 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℝ)
7161nnred 11035 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) ∈ ℝ)
7261nngt0d 11064 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 0 < (𝑄𝑁))
73 ltmul2 10874 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ((𝑄𝑁) ∈ ℝ ∧ 0 < (𝑄𝑁))) → (1 < 𝐾 ↔ ((𝑄𝑁) · 1) < ((𝑄𝑁) · 𝐾)))
7467, 70, 71, 72, 73syl112anc 1330 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (1 < 𝐾 ↔ ((𝑄𝑁) · 1) < ((𝑄𝑁) · 𝐾)))
7566, 74mpbid 222 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 1) < ((𝑄𝑁) · 𝐾))
7663, 75eqbrtrrd 4677 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) < ((𝑄𝑁) · 𝐾))
77 nnmulcl 11043 . . . . . . . 8 (((𝑄𝑁) ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑄𝑁) · 𝐾) ∈ ℕ)
7854, 68, 77syl2an 494 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 𝐾) ∈ ℕ)
7978nnred 11035 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 𝐾) ∈ ℝ)
8071, 79ltnled 10184 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) < ((𝑄𝑁) · 𝐾) ↔ ¬ ((𝑄𝑁) · 𝐾) ≤ (𝑄𝑁)))
8176, 80mpbid 222 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ¬ ((𝑄𝑁) · 𝐾) ≤ (𝑄𝑁))
8210a1i 11 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ)
8350ad2antrr 762 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥)
8478adantr 481 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ∈ ℕ)
85 simpr 477 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))
8669adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → 𝐾 ∈ ℕ)
8786nnsqcld 13029 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝐾↑2) ∈ ℕ)
88 nnz 11399 . . . . . . . . . . 11 ((𝐾↑2) ∈ ℕ → (𝐾↑2) ∈ ℤ)
8987, 88syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝐾↑2) ∈ ℤ)
9054nnsqcld 13029 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ∈ ℕ)
919, 90sseldi 3601 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ∈ ℤ)
9290nnne0d 11065 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ≠ 0)
93 dvdsval2 14986 . . . . . . . . . . . . 13 ((((𝑄𝑁)↑2) ∈ ℤ ∧ ((𝑄𝑁)↑2) ≠ 0 ∧ 𝑁 ∈ ℤ) → (((𝑄𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ))
9491, 92, 14, 93syl3anc 1326 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑄𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ))
9560, 94mpbid 222 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ)
9695ad2antrr 762 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ)
9791ad2antrr 762 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ∈ ℤ)
98 dvdscmul 15008 . . . . . . . . . 10 (((𝐾↑2) ∈ ℤ ∧ (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ ∧ ((𝑄𝑁)↑2) ∈ ℤ) → ((𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)) → (((𝑄𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2)))))
9989, 96, 97, 98syl3anc 1326 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)) → (((𝑄𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2)))))
10085, 99mpd 15 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2))))
10162adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝑄𝑁) ∈ ℂ)
10286nncnd 11036 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → 𝐾 ∈ ℂ)
103101, 102sqmuld 13020 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁) · 𝐾)↑2) = (((𝑄𝑁)↑2) · (𝐾↑2)))
104103eqcomd 2628 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁)↑2) · (𝐾↑2)) = (((𝑄𝑁) · 𝐾)↑2))
105 nncn 11028 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
106105ad2antrr 762 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → 𝑁 ∈ ℂ)
10790ad2antrr 762 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ∈ ℕ)
108107nncnd 11036 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ∈ ℂ)
10992ad2antrr 762 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ≠ 0)
110106, 108, 109divcan2d 10803 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2))) = 𝑁)
111100, 104, 1103brtr3d 4684 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁) · 𝐾)↑2) ∥ 𝑁)
112 oveq1 6657 . . . . . . . . 9 (𝑟 = ((𝑄𝑁) · 𝐾) → (𝑟↑2) = (((𝑄𝑁) · 𝐾)↑2))
113112breq1d 4663 . . . . . . . 8 (𝑟 = ((𝑄𝑁) · 𝐾) → ((𝑟↑2) ∥ 𝑁 ↔ (((𝑄𝑁) · 𝐾)↑2) ∥ 𝑁))
114113elrab 3363 . . . . . . 7 (((𝑄𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ (((𝑄𝑁) · 𝐾) ∈ ℕ ∧ (((𝑄𝑁) · 𝐾)↑2) ∥ 𝑁))
11584, 111, 114sylanbrc 698 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
116 suprzub 11779 . . . . . 6 (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥 ∧ ((𝑄𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) → ((𝑄𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
11782, 83, 115, 116syl3anc 1326 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
1188ad2antrr 762 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝑄𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
119117, 118breqtrrd 4681 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ≤ (𝑄𝑁))
12081, 119mtand 691 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))
121120ex 450 . 2 (𝑁 ∈ ℕ → (𝐾 ∈ (ℤ‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))))
12254, 60, 1213jca 1242 1 (𝑁 ∈ ℕ → ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁 ∧ (𝐾 ∈ (ℤ‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  cz 11377  cuz 11687  cexp 12860  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861  df-dvds 14984
This theorem is referenced by:  prmreclem2  15621  prmreclem3  15622
  Copyright terms: Public domain W3C validator