MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsumo2 Structured version   Visualization version   GIF version

Theorem telfsumo2 14535
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsumo.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsumo.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsumo.4 (𝑘 = 𝑁𝐴 = 𝐸)
telfsumo.5 (𝜑𝑁 ∈ (ℤ𝑀))
telfsumo.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsumo2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵) = (𝐸𝐷))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsumo2
StepHypRef Expression
1 telfsumo.1 . . . 4 (𝑘 = 𝑗𝐴 = 𝐵)
21negeqd 10275 . . 3 (𝑘 = 𝑗 → -𝐴 = -𝐵)
3 telfsumo.2 . . . 4 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
43negeqd 10275 . . 3 (𝑘 = (𝑗 + 1) → -𝐴 = -𝐶)
5 telfsumo.3 . . . 4 (𝑘 = 𝑀𝐴 = 𝐷)
65negeqd 10275 . . 3 (𝑘 = 𝑀 → -𝐴 = -𝐷)
7 telfsumo.4 . . . 4 (𝑘 = 𝑁𝐴 = 𝐸)
87negeqd 10275 . . 3 (𝑘 = 𝑁 → -𝐴 = -𝐸)
9 telfsumo.5 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
10 telfsumo.6 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1110negcld 10379 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -𝐴 ∈ ℂ)
122, 4, 6, 8, 9, 11telfsumo 14534 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = (-𝐷 − -𝐸))
1310ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
14 elfzofz 12485 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
151eleq1d 2686 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
1615rspccva 3308 . . . . 5 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
1713, 14, 16syl2an 494 . . . 4 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
18 fzofzp1 12565 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
193eleq1d 2686 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
2019rspccva 3308 . . . . 5 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ)
2113, 18, 20syl2an 494 . . . 4 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
2217, 21neg2subd 10409 . . 3 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (-𝐵 − -𝐶) = (𝐶𝐵))
2322sumeq2dv 14433 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵))
24 eluzfz1 12348 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
259, 24syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
265eleq1d 2686 . . . . 5 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
2726rspcv 3305 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐷 ∈ ℂ))
2825, 13, 27sylc 65 . . 3 (𝜑𝐷 ∈ ℂ)
29 eluzfz2 12349 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
309, 29syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
317eleq1d 2686 . . . . 5 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
3231rspcv 3305 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐸 ∈ ℂ))
3330, 13, 32sylc 65 . . 3 (𝜑𝐸 ∈ ℂ)
3428, 33neg2subd 10409 . 2 (𝜑 → (-𝐷 − -𝐸) = (𝐸𝐷))
3512, 23, 343eqtr3d 2664 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵) = (𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939  cmin 10266  -cneg 10267  cuz 11687  ...cfz 12326  ..^cfzo 12465  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  telfsum2  14537  dvfsumle  23784  dvfsumabs  23786  advlogexp  24401
  Copyright terms: Public domain W3C validator