![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmcn2 | Structured version Visualization version GIF version |
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.) |
Ref | Expression |
---|---|
txlm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
txlm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
txlm.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
txlm.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
txlm.f | ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
txlm.g | ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) |
lmcn2.fl | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) |
lmcn2.gl | ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) |
lmcn2.o | ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
lmcn2.h | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
Ref | Expression |
---|---|
lmcn2 | ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txlm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) | |
2 | 1 | ffvelrnda 6359 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑋) |
3 | txlm.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) | |
4 | 3 | ffvelrnda 6359 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ 𝑌) |
5 | opelxpi 5148 | . . . . . 6 ⊢ (((𝐹‘𝑛) ∈ 𝑋 ∧ (𝐺‘𝑛) ∈ 𝑌) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) | |
6 | 2, 4, 5 | syl2anc 693 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) |
7 | eqidd 2623 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
8 | txlm.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
9 | txlm.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
10 | txtopon 21394 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | |
11 | 8, 9, 10 | syl2anc 693 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
12 | lmcn2.o | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | |
13 | cntop2 21045 | . . . . . . . . 9 ⊢ (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top) | |
14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ Top) |
15 | eqid 2622 | . . . . . . . . 9 ⊢ ∪ 𝑁 = ∪ 𝑁 | |
16 | 15 | toptopon 20722 | . . . . . . . 8 ⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) |
17 | 14, 16 | sylib 208 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
18 | cnf2 21053 | . . . . . . 7 ⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) | |
19 | 11, 17, 12, 18 | syl3anc 1326 | . . . . . 6 ⊢ (𝜑 → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) |
20 | 19 | feqmptd 6249 | . . . . 5 ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂‘𝑥))) |
21 | fveq2 6191 | . . . . . 6 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
22 | df-ov 6653 | . . . . . 6 ⊢ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
23 | 21, 22 | syl6eqr 2674 | . . . . 5 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
24 | 6, 7, 20, 23 | fmptco 6396 | . . . 4 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)))) |
25 | lmcn2.h | . . . 4 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) | |
26 | 24, 25 | syl6eqr 2674 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = 𝐻) |
27 | lmcn2.fl | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) | |
28 | lmcn2.gl | . . . . 5 ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) | |
29 | txlm.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
30 | txlm.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
31 | eqid 2622 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
32 | 29, 30, 8, 9, 1, 3, 31 | txlm 21451 | . . . . 5 ⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) |
33 | 27, 28, 32 | mpbi2and 956 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉) |
34 | 33, 12 | lmcn 21109 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉))(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
35 | 26, 34 | eqbrtrrd 4677 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
36 | df-ov 6653 | . 2 ⊢ (𝑅𝑂𝑆) = (𝑂‘〈𝑅, 𝑆〉) | |
37 | 35, 36 | syl6breqr 4695 | 1 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 〈cop 4183 ∪ cuni 4436 class class class wbr 4653 ↦ cmpt 4729 × cxp 5112 ∘ ccom 5118 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℤcz 11377 ℤ≥cuz 11687 Topctop 20698 TopOnctopon 20715 Cn ccn 21028 ⇝𝑡clm 21030 ×t ctx 21363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-z 11378 df-uz 11688 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 df-cnp 21032 df-lm 21033 df-tx 21365 |
This theorem is referenced by: hlimadd 28050 |
Copyright terms: Public domain | W3C validator |