MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkdvspth Structured version   Visualization version   GIF version

Theorem upgrwlkdvspth 26635
Description: A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 26634. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Revised by AV, 17-Jan-2021.)
Assertion
Ref Expression
upgrwlkdvspth ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem upgrwlkdvspth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1060 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃))
2 upgrspthswlk 26634 . . . . 5 (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
323ad2ant1 1082 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
43breqd 4664 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(SPaths‘𝐺)𝑃𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}𝑃))
5 wlkv 26508 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
6 3simpc 1060 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
75, 6syl 17 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V))
873ad2ant2 1083 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
9 breq12 4658 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(Walks‘𝐺)𝑝𝐹(Walks‘𝐺)𝑃))
10 cnveq 5296 . . . . . . . 8 (𝑝 = 𝑃𝑝 = 𝑃)
1110funeqd 5910 . . . . . . 7 (𝑝 = 𝑃 → (Fun 𝑝 ↔ Fun 𝑃))
1211adantl 482 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑝 ↔ Fun 𝑃))
139, 12anbi12d 747 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
14 eqid 2622 . . . . 5 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}
1513, 14brabga 4989 . . . 4 ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
168, 15syl 17 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
174, 16bitrd 268 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
181, 17mpbird 247 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  {copab 4712  ccnv 5113  Fun wfun 5882  cfv 5888   UPGraph cupgr 25975  Walkscwlks 26492  SPathscspths 26609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495  df-trls 26589  df-spths 26613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator