Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf Structured version   Visualization version   GIF version

Theorem uspgrsprf 41754
Description: The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprf 𝐹:𝐺𝑃
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)

Proof of Theorem uspgrsprf
StepHypRef Expression
1 uspgrsprf.f . 2 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
2 uspgrsprf.g . . . . 5 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
32eleq2i 2693 . . . 4 (𝑔𝐺𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
4 elopab 4983 . . . 4 (𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
53, 4bitri 264 . . 3 (𝑔𝐺 ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
6 uspgrupgr 26071 . . . . . . . . . . . . 13 (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph )
7 upgredgssspr 41751 . . . . . . . . . . . . 13 (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
86, 7syl 17 . . . . . . . . . . . 12 (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
98adantr 481 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
10 simpr 477 . . . . . . . . . . . . 13 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒)
11 fveq2 6191 . . . . . . . . . . . . . 14 ((Vtx‘𝑞) = 𝑣 → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑣))
1211adantr 481 . . . . . . . . . . . . 13 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑣))
1310, 12sseq12d 3634 . . . . . . . . . . . 12 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → ((Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)) ↔ 𝑒 ⊆ (Pairs‘𝑣)))
1413adantl 482 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → ((Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)) ↔ 𝑒 ⊆ (Pairs‘𝑣)))
159, 14mpbid 222 . . . . . . . . . 10 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑣))
1615rexlimiva 3028 . . . . . . . . 9 (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 ⊆ (Pairs‘𝑣))
1716adantl 482 . . . . . . . 8 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑣))
18 fveq2 6191 . . . . . . . . . 10 (𝑣 = 𝑉 → (Pairs‘𝑣) = (Pairs‘𝑉))
1918sseq2d 3633 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑒 ⊆ (Pairs‘𝑣) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2019adantr 481 . . . . . . . 8 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑒 ⊆ (Pairs‘𝑣) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2117, 20mpbid 222 . . . . . . 7 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑉))
2221adantl 482 . . . . . 6 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒 ⊆ (Pairs‘𝑉))
23 vex 3203 . . . . . . . . 9 𝑣 ∈ V
24 vex 3203 . . . . . . . . 9 𝑒 ∈ V
2523, 24op2ndd 7179 . . . . . . . 8 (𝑔 = ⟨𝑣, 𝑒⟩ → (2nd𝑔) = 𝑒)
2625sseq1d 3632 . . . . . . 7 (𝑔 = ⟨𝑣, 𝑒⟩ → ((2nd𝑔) ⊆ (Pairs‘𝑉) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2726adantr 481 . . . . . 6 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑔) ⊆ (Pairs‘𝑉) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2822, 27mpbird 247 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ⊆ (Pairs‘𝑉))
29 uspgrsprf.p . . . . . . 7 𝑃 = 𝒫 (Pairs‘𝑉)
3029eleq2i 2693 . . . . . 6 ((2nd𝑔) ∈ 𝑃 ↔ (2nd𝑔) ∈ 𝒫 (Pairs‘𝑉))
31 fvex 6201 . . . . . . 7 (2nd𝑔) ∈ V
3231elpw 4164 . . . . . 6 ((2nd𝑔) ∈ 𝒫 (Pairs‘𝑉) ↔ (2nd𝑔) ⊆ (Pairs‘𝑉))
3330, 32bitri 264 . . . . 5 ((2nd𝑔) ∈ 𝑃 ↔ (2nd𝑔) ⊆ (Pairs‘𝑉))
3428, 33sylibr 224 . . . 4 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ∈ 𝑃)
3534exlimivv 1860 . . 3 (∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ∈ 𝑃)
365, 35sylbi 207 . 2 (𝑔𝐺 → (2nd𝑔) ∈ 𝑃)
371, 36fmpti 6383 1 𝐹:𝐺𝑃
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  wss 3574  𝒫 cpw 4158  cop 4183  {copab 4712  cmpt 4729  wf 5884  cfv 5888  2nd c2nd 7167  Vtxcvtx 25874  Edgcedg 25939   UPGraph cupgr 25975   USPGraph cuspgr 26043  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-uspgr 26045  df-spr 41728
This theorem is referenced by:  uspgrsprf1  41755  uspgrsprfo  41756
  Copyright terms: Public domain W3C validator