Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf Structured version   Visualization version   Unicode version

Theorem uspgrsprf 41754
Description: The mapping  F is a function from the "simple pseudographs" with a fixed set of vertices  V into the subsets of the set of pairs over the set  V. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p  |-  P  =  ~P (Pairs `  V
)
uspgrsprf.g  |-  G  =  { <. v ,  e
>.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) }
uspgrsprf.f  |-  F  =  ( g  e.  G  |->  ( 2nd `  g
) )
Assertion
Ref Expression
uspgrsprf  |-  F : G
--> P
Distinct variable groups:    P, e,
q, v    e, V, q, v    g, G    P, g, e, v
Allowed substitution hints:    F( v, e, g, q)    G( v, e, q)    V( g)

Proof of Theorem uspgrsprf
StepHypRef Expression
1 uspgrsprf.f . 2  |-  F  =  ( g  e.  G  |->  ( 2nd `  g
) )
2 uspgrsprf.g . . . . 5  |-  G  =  { <. v ,  e
>.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) }
32eleq2i 2693 . . . 4  |-  ( g  e.  G  <->  g  e.  {
<. v ,  e >.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) } )
4 elopab 4983 . . . 4  |-  ( g  e.  { <. v ,  e >.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) }  <->  E. v E. e ( g  = 
<. v ,  e >.  /\  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e ) ) ) )
53, 4bitri 264 . . 3  |-  ( g  e.  G  <->  E. v E. e ( g  = 
<. v ,  e >.  /\  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e ) ) ) )
6 uspgrupgr 26071 . . . . . . . . . . . . 13  |-  ( q  e. USPGraph  ->  q  e. UPGraph  )
7 upgredgssspr 41751 . . . . . . . . . . . . 13  |-  ( q  e. UPGraph  ->  (Edg `  q
)  C_  (Pairs `  (Vtx `  q ) ) )
86, 7syl 17 . . . . . . . . . . . 12  |-  ( q  e. USPGraph  ->  (Edg `  q
)  C_  (Pairs `  (Vtx `  q ) ) )
98adantr 481 . . . . . . . . . . 11  |-  ( ( q  e. USPGraph  /\  (
(Vtx `  q )  =  v  /\  (Edg `  q )  =  e ) )  ->  (Edg `  q )  C_  (Pairs `  (Vtx `  q )
) )
10 simpr 477 . . . . . . . . . . . . 13  |-  ( ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e )  ->  (Edg `  q
)  =  e )
11 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( (Vtx
`  q )  =  v  ->  (Pairs `  (Vtx `  q ) )  =  (Pairs `  v )
)
1211adantr 481 . . . . . . . . . . . . 13  |-  ( ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e )  ->  (Pairs `  (Vtx `  q ) )  =  (Pairs `  v )
)
1310, 12sseq12d 3634 . . . . . . . . . . . 12  |-  ( ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e )  ->  ( (Edg `  q )  C_  (Pairs `  (Vtx `  q )
)  <->  e  C_  (Pairs `  v ) ) )
1413adantl 482 . . . . . . . . . . 11  |-  ( ( q  e. USPGraph  /\  (
(Vtx `  q )  =  v  /\  (Edg `  q )  =  e ) )  ->  (
(Edg `  q )  C_  (Pairs `  (Vtx `  q
) )  <->  e  C_  (Pairs `  v ) ) )
159, 14mpbid 222 . . . . . . . . . 10  |-  ( ( q  e. USPGraph  /\  (
(Vtx `  q )  =  v  /\  (Edg `  q )  =  e ) )  ->  e  C_  (Pairs `  v )
)
1615rexlimiva 3028 . . . . . . . . 9  |-  ( E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e )  ->  e  C_  (Pairs `  v ) )
1716adantl 482 . . . . . . . 8  |-  ( ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) )  ->  e  C_  (Pairs `  v ) )
18 fveq2 6191 . . . . . . . . . 10  |-  ( v  =  V  ->  (Pairs `  v )  =  (Pairs `  V ) )
1918sseq2d 3633 . . . . . . . . 9  |-  ( v  =  V  ->  (
e  C_  (Pairs `  v
)  <->  e  C_  (Pairs `  V ) ) )
2019adantr 481 . . . . . . . 8  |-  ( ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) )  ->  ( e  C_  (Pairs `  v )  <->  e 
C_  (Pairs `  V )
) )
2117, 20mpbid 222 . . . . . . 7  |-  ( ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) )  ->  e  C_  (Pairs `  V ) )
2221adantl 482 . . . . . 6  |-  ( ( g  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  e  C_  (Pairs `  V )
)
23 vex 3203 . . . . . . . . 9  |-  v  e. 
_V
24 vex 3203 . . . . . . . . 9  |-  e  e. 
_V
2523, 24op2ndd 7179 . . . . . . . 8  |-  ( g  =  <. v ,  e
>.  ->  ( 2nd `  g
)  =  e )
2625sseq1d 3632 . . . . . . 7  |-  ( g  =  <. v ,  e
>.  ->  ( ( 2nd `  g )  C_  (Pairs `  V )  <->  e  C_  (Pairs `  V ) ) )
2726adantr 481 . . . . . 6  |-  ( ( g  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  (
( 2nd `  g
)  C_  (Pairs `  V
)  <->  e  C_  (Pairs `  V ) ) )
2822, 27mpbird 247 . . . . 5  |-  ( ( g  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  ( 2nd `  g )  C_  (Pairs `  V ) )
29 uspgrsprf.p . . . . . . 7  |-  P  =  ~P (Pairs `  V
)
3029eleq2i 2693 . . . . . 6  |-  ( ( 2nd `  g )  e.  P  <->  ( 2nd `  g )  e.  ~P (Pairs `  V ) )
31 fvex 6201 . . . . . . 7  |-  ( 2nd `  g )  e.  _V
3231elpw 4164 . . . . . 6  |-  ( ( 2nd `  g )  e.  ~P (Pairs `  V )  <->  ( 2nd `  g )  C_  (Pairs `  V ) )
3330, 32bitri 264 . . . . 5  |-  ( ( 2nd `  g )  e.  P  <->  ( 2nd `  g )  C_  (Pairs `  V ) )
3428, 33sylibr 224 . . . 4  |-  ( ( g  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  ( 2nd `  g )  e.  P )
3534exlimivv 1860 . . 3  |-  ( E. v E. e ( g  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  ( 2nd `  g )  e.  P )
365, 35sylbi 207 . 2  |-  ( g  e.  G  ->  ( 2nd `  g )  e.  P )
371, 36fmpti 6383 1  |-  F : G
--> P
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913    C_ wss 3574   ~Pcpw 4158   <.cop 4183   {copab 4712    |-> cmpt 4729   -->wf 5884   ` cfv 5888   2ndc2nd 7167  Vtxcvtx 25874  Edgcedg 25939   UPGraph cupgr 25975   USPGraph cuspgr 26043  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-uspgr 26045  df-spr 41728
This theorem is referenced by:  uspgrsprf1  41755  uspgrsprfo  41756
  Copyright terms: Public domain W3C validator