Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprfo Structured version   Visualization version   GIF version

Theorem uspgrsprfo 41756
Description: The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 onto the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprfo (𝑉𝑊𝐹:𝐺onto𝑃)
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑒,𝑊,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣   𝑊,𝑞
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem uspgrsprfo
Dummy variables 𝑎 𝑏 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrsprf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 uspgrsprf.g . . . 4 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
3 uspgrsprf.f . . . 4 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
41, 2, 3uspgrsprf 41754 . . 3 𝐹:𝐺𝑃
54a1i 11 . 2 (𝑉𝑊𝐹:𝐺𝑃)
61eleq2i 2693 . . . . . . 7 (𝑎𝑃𝑎 ∈ 𝒫 (Pairs‘𝑉))
7 selpw 4165 . . . . . . 7 (𝑎 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑎 ⊆ (Pairs‘𝑉))
86, 7bitri 264 . . . . . 6 (𝑎𝑃𝑎 ⊆ (Pairs‘𝑉))
9 eqidd 2623 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑉 = 𝑉)
10 vex 3203 . . . . . . . . . . . . . . 15 𝑎 ∈ V
1110a1i 11 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 ∈ V)
12 f1oi 6174 . . . . . . . . . . . . . . . . 17 ( I ↾ 𝑎):𝑎1-1-onto𝑎
1312a1i 11 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):𝑎1-1-onto𝑎)
14 dmresi 5457 . . . . . . . . . . . . . . . . 17 dom ( I ↾ 𝑎) = 𝑎
15 f1oeq2 6128 . . . . . . . . . . . . . . . . 17 (dom ( I ↾ 𝑎) = 𝑎 → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎 ↔ ( I ↾ 𝑎):𝑎1-1-onto𝑎))
1614, 15ax-mp 5 . . . . . . . . . . . . . . . 16 (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎 ↔ ( I ↾ 𝑎):𝑎1-1-onto𝑎)
1713, 16sylibr 224 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎)
18 sprvalpwle2 41739 . . . . . . . . . . . . . . . . 17 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
1918sseq2d 3633 . . . . . . . . . . . . . . . 16 (𝑉𝑊 → (𝑎 ⊆ (Pairs‘𝑉) ↔ 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
2019biimpac 503 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
2117, 20jca 554 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
22 f1oeq3 6129 . . . . . . . . . . . . . . 15 (𝑓 = 𝑎 → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓 ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎))
23 sseq1 3626 . . . . . . . . . . . . . . 15 (𝑓 = 𝑎 → (𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2} ↔ 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
2422, 23anbi12d 747 . . . . . . . . . . . . . 14 (𝑓 = 𝑎 → ((( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2}) ↔ (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2})))
2511, 21, 24elabd 3352 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑓(( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
26 resiexg 7102 . . . . . . . . . . . . . . 15 (𝑎 ∈ V → ( I ↾ 𝑎) ∈ V)
2710, 26ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ 𝑎) ∈ V
2827f11o 7128 . . . . . . . . . . . . 13 (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2} ↔ ∃𝑓(( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
2925, 28sylibr 224 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
3010a1i 11 . . . . . . . . . . . . . . . 16 (𝑎 ⊆ (Pairs‘𝑉) → 𝑎 ∈ V)
3130resiexd 6480 . . . . . . . . . . . . . . 15 (𝑎 ⊆ (Pairs‘𝑉) → ( I ↾ 𝑎) ∈ V)
3231anim2i 593 . . . . . . . . . . . . . 14 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V))
3332ancoms 469 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V))
34 isuspgrop 26056 . . . . . . . . . . . . 13 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
3533, 34syl 17 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
3629, 35mpbird 247 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph )
37 fveq2 6191 . . . . . . . . . . . . . 14 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → (Vtx‘𝑞) = (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩))
3837eqeq1d 2624 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → ((Vtx‘𝑞) = 𝑉 ↔ (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉))
39 fveq2 6191 . . . . . . . . . . . . . 14 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → (Edg‘𝑞) = (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩))
4039eqeq1d 2624 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → ((Edg‘𝑞) = 𝑎 ↔ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
4138, 40anbi12d 747 . . . . . . . . . . . 12 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → (((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎) ↔ ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)))
4241adantl 482 . . . . . . . . . . 11 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) ∧ 𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩) → (((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎) ↔ ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)))
43 opvtxfv 25884 . . . . . . . . . . . . . 14 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉)
4432, 43syl 17 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉)
45 edgopval 25944 . . . . . . . . . . . . . . 15 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = ran ( I ↾ 𝑎))
4632, 45syl 17 . . . . . . . . . . . . . 14 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = ran ( I ↾ 𝑎))
47 rnresi 5479 . . . . . . . . . . . . . 14 ran ( I ↾ 𝑎) = 𝑎
4846, 47syl6eq 2672 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)
4944, 48jca 554 . . . . . . . . . . . 12 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
5049ancoms 469 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
5136, 42, 50rspcedvd 3317 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))
529, 51jca 554 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
532eleq2i 2693 . . . . . . . . . 10 (⟨𝑉, 𝑎⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
5430anim1i 592 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑎 ∈ V ∧ 𝑉𝑊))
5554ancomd 467 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉𝑊𝑎 ∈ V))
56 eqeq1 2626 . . . . . . . . . . . . . 14 (𝑣 = 𝑉 → (𝑣 = 𝑉𝑉 = 𝑉))
5756adantr 481 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑒 = 𝑎) → (𝑣 = 𝑉𝑉 = 𝑉))
58 eqeq2 2633 . . . . . . . . . . . . . . 15 (𝑣 = 𝑉 → ((Vtx‘𝑞) = 𝑣 ↔ (Vtx‘𝑞) = 𝑉))
59 eqeq2 2633 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → ((Edg‘𝑞) = 𝑒 ↔ (Edg‘𝑞) = 𝑎))
6058, 59bi2anan9 917 . . . . . . . . . . . . . 14 ((𝑣 = 𝑉𝑒 = 𝑎) → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
6160rexbidv 3052 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑒 = 𝑎) → (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
6257, 61anbi12d 747 . . . . . . . . . . . 12 ((𝑣 = 𝑉𝑒 = 𝑎) → ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6362opelopabga 4988 . . . . . . . . . . 11 ((𝑉𝑊𝑎 ∈ V) → (⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6455, 63syl 17 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6553, 64syl5bb 272 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, 𝑎⟩ ∈ 𝐺 ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6652, 65mpbird 247 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ⟨𝑉, 𝑎⟩ ∈ 𝐺)
67 fveq2 6191 . . . . . . . . . 10 (𝑏 = ⟨𝑉, 𝑎⟩ → (2nd𝑏) = (2nd ‘⟨𝑉, 𝑎⟩))
6867eqeq2d 2632 . . . . . . . . 9 (𝑏 = ⟨𝑉, 𝑎⟩ → (𝑎 = (2nd𝑏) ↔ 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩)))
6968adantl 482 . . . . . . . 8 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) ∧ 𝑏 = ⟨𝑉, 𝑎⟩) → (𝑎 = (2nd𝑏) ↔ 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩)))
70 op2ndg 7181 . . . . . . . . . . 11 ((𝑉𝑊𝑎 ∈ V) → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
7110, 70mpan2 707 . . . . . . . . . 10 (𝑉𝑊 → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
7271adantl 482 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
7372eqcomd 2628 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩))
7466, 69, 73rspcedvd 3317 . . . . . . 7 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑏𝐺 𝑎 = (2nd𝑏))
7574ex 450 . . . . . 6 (𝑎 ⊆ (Pairs‘𝑉) → (𝑉𝑊 → ∃𝑏𝐺 𝑎 = (2nd𝑏)))
768, 75sylbi 207 . . . . 5 (𝑎𝑃 → (𝑉𝑊 → ∃𝑏𝐺 𝑎 = (2nd𝑏)))
7776impcom 446 . . . 4 ((𝑉𝑊𝑎𝑃) → ∃𝑏𝐺 𝑎 = (2nd𝑏))
781, 2, 3uspgrsprfv 41753 . . . . . . 7 (𝑏𝐺 → (𝐹𝑏) = (2nd𝑏))
7978adantl 482 . . . . . 6 (((𝑉𝑊𝑎𝑃) ∧ 𝑏𝐺) → (𝐹𝑏) = (2nd𝑏))
8079eqeq2d 2632 . . . . 5 (((𝑉𝑊𝑎𝑃) ∧ 𝑏𝐺) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (2nd𝑏)))
8180rexbidva 3049 . . . 4 ((𝑉𝑊𝑎𝑃) → (∃𝑏𝐺 𝑎 = (𝐹𝑏) ↔ ∃𝑏𝐺 𝑎 = (2nd𝑏)))
8277, 81mpbird 247 . . 3 ((𝑉𝑊𝑎𝑃) → ∃𝑏𝐺 𝑎 = (𝐹𝑏))
8382ralrimiva 2966 . 2 (𝑉𝑊 → ∀𝑎𝑃𝑏𝐺 𝑎 = (𝐹𝑏))
84 dffo3 6374 . 2 (𝐹:𝐺onto𝑃 ↔ (𝐹:𝐺𝑃 ∧ ∀𝑎𝑃𝑏𝐺 𝑎 = (𝐹𝑏)))
855, 83, 84sylanbrc 698 1 (𝑉𝑊𝐹:𝐺onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  cop 4183   class class class wbr 4653  {copab 4712  cmpt 4729   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  2nd c2nd 7167  cle 10075  2c2 11070  #chash 13117  Vtxcvtx 25874  Edgcedg 25939   USPGraph cuspgr 26043  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-vtx 25876  df-iedg 25877  df-edg 25940  df-upgr 25977  df-uspgr 26045  df-spr 41728
This theorem is referenced by:  uspgrsprf1o  41757
  Copyright terms: Public domain W3C validator