Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliccico Structured version   Visualization version   GIF version

Theorem voliccico 40216
Description: A closed interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
voliccico.1 (𝜑𝐴 ∈ ℝ)
voliccico.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
voliccico (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))

Proof of Theorem voliccico
StepHypRef Expression
1 iftrue 4092 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
21adantl 482 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
3 voliccico.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
43recnd 10068 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
54subidd 10380 . . . . . . . 8 (𝜑 → (𝐵𝐵) = 0)
65eqcomd 2628 . . . . . . 7 (𝜑 → 0 = (𝐵𝐵))
76ad2antrr 762 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 0 = (𝐵𝐵))
8 iffalse 4095 . . . . . . 7 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
98adantl 482 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
10 simpll 790 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝜑)
11 voliccico.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
1310, 3syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
14 simpr 477 . . . . . . . . 9 ((𝜑𝐴𝐵) → 𝐴𝐵)
1514adantr 481 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴𝐵)
16 simpr 477 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
1712, 13, 15, 16lenlteq 39580 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵)
18 oveq2 6658 . . . . . . . 8 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
1918adantl 482 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝐵𝐴) = (𝐵𝐵))
2010, 17, 19syl2anc 693 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) = (𝐵𝐵))
217, 9, 203eqtr4d 2666 . . . . 5 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
222, 21pm2.61dan 832 . . . 4 ((𝜑𝐴𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
2322eqcomd 2628 . . 3 ((𝜑𝐴𝐵) → (𝐵𝐴) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2411adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
253adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
26 volicc 40215 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵𝐴))
2724, 25, 14, 26syl3anc 1326 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵𝐴))
28 volico 40200 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2911, 3, 28syl2anc 693 . . . 4 (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3029adantr 481 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3123, 27, 303eqtr4d 2666 . 2 ((𝜑𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
32 simpl 473 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝜑)
33 simpr 477 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
3432, 3syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ)
3532, 11syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ)
3634, 35ltnled 10184 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
3733, 36mpbird 247 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
38 simpr 477 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
3911rexrd 10089 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
403rexrd 10089 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
41 icc0 12223 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
4239, 40, 41syl2anc 693 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
4342adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
4438, 43mpbird 247 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
453adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ)
4611adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ)
4745, 46, 38ltled 10185 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐵𝐴)
4846rexrd 10089 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
4945rexrd 10089 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
50 ico0 12221 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
5148, 49, 50syl2anc 693 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
5247, 51mpbird 247 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴[,)𝐵) = ∅)
5344, 52eqtr4d 2659 . . . 4 ((𝜑𝐵 < 𝐴) → (𝐴[,]𝐵) = (𝐴[,)𝐵))
5453fveq2d 6195 . . 3 ((𝜑𝐵 < 𝐴) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
5532, 37, 54syl2anc 693 . 2 ((𝜑 ∧ ¬ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
5631, 55pm2.61dan 832 1 (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  c0 3915  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  *cxr 10073   < clt 10074  cle 10075  cmin 10266  [,)cico 12177  [,]cicc 12178  volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  vonn0icc  40902
  Copyright terms: Public domain W3C validator