| Step | Hyp | Ref
| Expression |
| 1 | | df-ico 12181 |
. . . . . . . . 9
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 2 | 1 | reseq1i 5392 |
. . . . . . . 8
⊢ ([,)
↾ (ℝ × ℝ)) = ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ↾ (ℝ ×
ℝ)) |
| 3 | | ressxr 10083 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ* |
| 4 | | resmpt2 6758 |
. . . . . . . . 9
⊢ ((ℝ
⊆ ℝ* ∧ ℝ ⊆ ℝ*) →
((𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) =
(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)})) |
| 5 | 3, 3, 4 | mp2an 708 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*,
𝑦 ∈
ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) =
(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 6 | 2, 5 | eqtri 2644 |
. . . . . . 7
⊢ ([,)
↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 7 | 6 | rneqi 5352 |
. . . . . 6
⊢ ran ([,)
↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 8 | 7 | eleq2i 2693 |
. . . . 5
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) ↔ 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)})) |
| 9 | 8 | biimpi 206 |
. . . 4
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)})) |
| 10 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 11 | | xrex 11829 |
. . . . . 6
⊢
ℝ* ∈ V |
| 12 | 11 | rabex 4813 |
. . . . 5
⊢ {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ V |
| 13 | 10, 12 | elrnmpt2 6773 |
. . . 4
⊢ (𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 14 | 9, 13 | sylib 208 |
. . 3
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 15 | | simpr 477 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 16 | 3 | sseli 3599 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
| 17 | 16 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈
ℝ*) |
| 18 | 3 | sseli 3599 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
| 19 | 18 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ*) |
| 20 | | icoval 12213 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 21 | 17, 19, 20 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 22 | 21 | eqcomd 2628 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = (𝑥[,)𝑦)) |
| 23 | 22 | adantr 481 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = (𝑥[,)𝑦)) |
| 24 | 15, 23 | eqtrd 2656 |
. . . . . . 7
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) → 𝐴 = (𝑥[,)𝑦)) |
| 25 | 24 | ex 450 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → 𝐴 = (𝑥[,)𝑦))) |
| 26 | 25 | adantll 750 |
. . . . 5
⊢ (((𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → 𝐴 = (𝑥[,)𝑦))) |
| 27 | 26 | reximdva 3017 |
. . . 4
⊢ ((𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))) |
| 28 | 27 | reximdva 3017 |
. . 3
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))) |
| 29 | 14, 28 | mpd 15 |
. 2
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)) |
| 30 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) = (vol‘(𝑥[,)𝑦))) |
| 31 | 30 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘𝐴) = (vol‘(𝑥[,)𝑦))) |
| 32 | | volicorecl 40760 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(vol‘(𝑥[,)𝑦)) ∈
ℝ) |
| 33 | 32 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘(𝑥[,)𝑦)) ∈ ℝ) |
| 34 | 31, 33 | eqeltrd 2701 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘𝐴) ∈ ℝ) |
| 35 | 34 | ex 450 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ)) |
| 36 | 35 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))) |
| 37 | 36 | rexlimdvv 3037 |
. . . . 5
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ)) |
| 38 | 29, 37 | mpd 15 |
. . . 4
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ) |
| 39 | 38 | 2a1d 26 |
. . 3
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))) |
| 40 | 39 | rexlimdvv 3037 |
. 2
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ)) |
| 41 | 29, 40 | mpd 15 |
1
⊢ (𝐴 ∈ ran ([,) ↾
(ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ) |