MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknwwlksnsur Structured version   Visualization version   GIF version

Theorem wlknwwlksnsur 26776
Description: Lemma 3 for wlknwwlksnbij2 26778. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.)
Hypotheses
Ref Expression
wlknwwlksnbij.t 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁}
wlknwwlksnbij.w 𝑊 = (𝑁 WWalksN 𝐺)
wlknwwlksnbij.f 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
Assertion
Ref Expression
wlknwwlksnsur ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
Distinct variable groups:   𝐺,𝑝,𝑡   𝑁,𝑝,𝑡   𝑡,𝑇   𝑡,𝑊   𝐹,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   𝐹(𝑡)

Proof of Theorem wlknwwlksnsur
Dummy variables 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 26071 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
2 wlknwwlksnbij.t . . . 4 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁}
3 wlknwwlksnbij.w . . . 4 𝑊 = (𝑁 WWalksN 𝐺)
4 wlknwwlksnbij.f . . . 4 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
52, 3, 4wlknwwlksnfun 26774 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
61, 5sylan 488 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
73eleq2i 2693 . . . 4 (𝑝𝑊𝑝 ∈ (𝑁 WWalksN 𝐺))
8 wlklnwwlkn 26770 . . . . . . . . . . 11 (𝐺 ∈ USPGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 𝑁) ↔ 𝑝 ∈ (𝑁 WWalksN 𝐺)))
98adantr 481 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (∃𝑓(𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 𝑁) ↔ 𝑝 ∈ (𝑁 WWalksN 𝐺)))
10 df-br 4654 . . . . . . . . . . . 12 (𝑓(Walks‘𝐺)𝑝 ↔ ⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺))
11 vex 3203 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
12 vex 3203 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
1311, 12op1st 7176 . . . . . . . . . . . . . . 15 (1st ‘⟨𝑓, 𝑝⟩) = 𝑓
1413eqcomi 2631 . . . . . . . . . . . . . 14 𝑓 = (1st ‘⟨𝑓, 𝑝⟩)
1514fveq2i 6194 . . . . . . . . . . . . 13 (#‘𝑓) = (#‘(1st ‘⟨𝑓, 𝑝⟩))
1615eqeq1i 2627 . . . . . . . . . . . 12 ((#‘𝑓) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁)
17 elex 3212 . . . . . . . . . . . . . 14 (⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) → ⟨𝑓, 𝑝⟩ ∈ V)
18 eleq1 2689 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑓, 𝑝⟩ → (𝑢 ∈ (Walks‘𝐺) ↔ ⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺)))
1918biimparc 504 . . . . . . . . . . . . . . . . 17 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → 𝑢 ∈ (Walks‘𝐺))
2019adantr 481 . . . . . . . . . . . . . . . 16 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → 𝑢 ∈ (Walks‘𝐺))
21 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = ⟨𝑓, 𝑝⟩ → (1st𝑢) = (1st ‘⟨𝑓, 𝑝⟩))
2221fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝑢 = ⟨𝑓, 𝑝⟩ → (#‘(1st𝑢)) = (#‘(1st ‘⟨𝑓, 𝑝⟩)))
2322eqeq1d 2624 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑓, 𝑝⟩ → ((#‘(1st𝑢)) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁))
2423adantl 482 . . . . . . . . . . . . . . . . 17 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → ((#‘(1st𝑢)) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁))
2524biimpar 502 . . . . . . . . . . . . . . . 16 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → (#‘(1st𝑢)) = 𝑁)
26 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑢 = ⟨𝑓, 𝑝⟩ → (2nd𝑢) = (2nd ‘⟨𝑓, 𝑝⟩))
2711, 12op2nd 7177 . . . . . . . . . . . . . . . . . . 19 (2nd ‘⟨𝑓, 𝑝⟩) = 𝑝
2826, 27syl6req 2673 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑓, 𝑝⟩ → 𝑝 = (2nd𝑢))
2928adantl 482 . . . . . . . . . . . . . . . . 17 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → 𝑝 = (2nd𝑢))
3029adantr 481 . . . . . . . . . . . . . . . 16 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → 𝑝 = (2nd𝑢))
3120, 25, 30jca31 557 . . . . . . . . . . . . . . 15 (((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → ((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
3231ex 450 . . . . . . . . . . . . . 14 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → ((#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 → ((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢))))
3317, 32spcimedv 3292 . . . . . . . . . . . . 13 (⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) → ((#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢))))
3433imp 445 . . . . . . . . . . . 12 ((⟨𝑓, 𝑝⟩ ∈ (Walks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
3510, 16, 34syl2anb 496 . . . . . . . . . . 11 ((𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 𝑁) → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
3635exlimiv 1858 . . . . . . . . . 10 (∃𝑓(𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 𝑁) → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
379, 36syl6bir 244 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢))))
3837imp 445 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (𝑁 WWalksN 𝐺)) → ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
39 fveq2 6191 . . . . . . . . . . . . 13 (𝑝 = 𝑢 → (1st𝑝) = (1st𝑢))
4039fveq2d 6195 . . . . . . . . . . . 12 (𝑝 = 𝑢 → (#‘(1st𝑝)) = (#‘(1st𝑢)))
4140eqeq1d 2624 . . . . . . . . . . 11 (𝑝 = 𝑢 → ((#‘(1st𝑝)) = 𝑁 ↔ (#‘(1st𝑢)) = 𝑁))
4241elrab 3363 . . . . . . . . . 10 (𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁} ↔ (𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁))
4342anbi1i 731 . . . . . . . . 9 ((𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁} ∧ 𝑝 = (2nd𝑢)) ↔ ((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
4443exbii 1774 . . . . . . . 8 (∃𝑢(𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁} ∧ 𝑝 = (2nd𝑢)) ↔ ∃𝑢((𝑢 ∈ (Walks‘𝐺) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
4538, 44sylibr 224 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (𝑁 WWalksN 𝐺)) → ∃𝑢(𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁} ∧ 𝑝 = (2nd𝑢)))
46 df-rex 2918 . . . . . . 7 (∃𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁}𝑝 = (2nd𝑢) ↔ ∃𝑢(𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁} ∧ 𝑝 = (2nd𝑢)))
4745, 46sylibr 224 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (𝑁 WWalksN 𝐺)) → ∃𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁}𝑝 = (2nd𝑢))
482rexeqi 3143 . . . . . 6 (∃𝑢𝑇 𝑝 = (2nd𝑢) ↔ ∃𝑢 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (#‘(1st𝑝)) = 𝑁}𝑝 = (2nd𝑢))
4947, 48sylibr 224 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (𝑁 WWalksN 𝐺)) → ∃𝑢𝑇 𝑝 = (2nd𝑢))
50 fveq2 6191 . . . . . . . 8 (𝑡 = 𝑢 → (2nd𝑡) = (2nd𝑢))
51 fvex 6201 . . . . . . . 8 (2nd𝑢) ∈ V
5250, 4, 51fvmpt 6282 . . . . . . 7 (𝑢𝑇 → (𝐹𝑢) = (2nd𝑢))
5352eqeq2d 2632 . . . . . 6 (𝑢𝑇 → (𝑝 = (𝐹𝑢) ↔ 𝑝 = (2nd𝑢)))
5453rexbiia 3040 . . . . 5 (∃𝑢𝑇 𝑝 = (𝐹𝑢) ↔ ∃𝑢𝑇 𝑝 = (2nd𝑢))
5549, 54sylibr 224 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (𝑁 WWalksN 𝐺)) → ∃𝑢𝑇 𝑝 = (𝐹𝑢))
567, 55sylan2b 492 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝𝑊) → ∃𝑢𝑇 𝑝 = (𝐹𝑢))
5756ralrimiva 2966 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢))
58 dffo3 6374 . 2 (𝐹:𝑇onto𝑊 ↔ (𝐹:𝑇𝑊 ∧ ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢)))
596, 57, 58sylanbrc 698 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cop 4183   class class class wbr 4653  cmpt 4729  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  0cn0 11292  #chash 13117   UPGraph cupgr 25975   USPGraph cuspgr 26043  Walkscwlks 26492   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wlknwwlksnbij  26777
  Copyright terms: Public domain W3C validator