| Step | Hyp | Ref
| Expression |
| 1 | | wwlksnext.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | 1 | wwlknbp 26733 |
. . 3
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑇 ∈ Word 𝑉)) |
| 3 | | wwlksnext.e |
. . . . . . . . . . . 12
⊢ 𝐸 = (Edg‘𝐺) |
| 4 | 1, 3 | wwlknp 26734 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸)) |
| 5 | | simp1 1061 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → 𝑇 ∈ Word 𝑉) |
| 6 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → 𝑆 ∈ 𝑉) |
| 7 | | cats1un 13475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑇 ++ 〈“𝑆”〉) = (𝑇 ∪ {〈(#‘𝑇), 𝑆〉})) |
| 8 | 5, 6, 7 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ 〈“𝑆”〉) = (𝑇 ∪ {〈(#‘𝑇), 𝑆〉})) |
| 9 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈(#‘𝑇),
𝑆〉 ∈
V |
| 10 | 9 | snnz 4309 |
. . . . . . . . . . . . . . . . . . 19
⊢
{〈(#‘𝑇),
𝑆〉} ≠
∅ |
| 11 | 10 | neii 2796 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
{〈(#‘𝑇), 𝑆〉} =
∅ |
| 12 | 11 | intnan 960 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
(𝑇 = ∅ ∧
{〈(#‘𝑇), 𝑆〉} =
∅) |
| 13 | | df-ne 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑇 ∪ {〈(#‘𝑇), 𝑆〉}) ≠ ∅ ↔ ¬ (𝑇 ∪ {〈(#‘𝑇), 𝑆〉}) = ∅) |
| 14 | | un00 4011 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑇 = ∅ ∧
{〈(#‘𝑇), 𝑆〉} = ∅) ↔ (𝑇 ∪ {〈(#‘𝑇), 𝑆〉}) = ∅) |
| 15 | 13, 14 | xchbinxr 325 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑇 ∪ {〈(#‘𝑇), 𝑆〉}) ≠ ∅ ↔ ¬ (𝑇 = ∅ ∧
{〈(#‘𝑇), 𝑆〉} =
∅)) |
| 16 | 12, 15 | mpbir 221 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ∪ {〈(#‘𝑇), 𝑆〉}) ≠ ∅ |
| 17 | 16 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ∪ {〈(#‘𝑇), 𝑆〉}) ≠ ∅) |
| 18 | 8, 17 | eqnetrd 2861 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ 〈“𝑆”〉) ≠
∅) |
| 19 | | s1cl 13382 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) |
| 20 | 19 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → 〈“𝑆”〉 ∈ Word 𝑉) |
| 21 | | ccatcl 13359 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉) → (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉) |
| 22 | 5, 20, 21 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉) |
| 23 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑇 ∈ Word 𝑉) |
| 24 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → 𝑆 ∈ 𝑉) |
| 25 | 24 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑆 ∈ 𝑉) |
| 26 | | fzossfzop1 12545 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑁 ∈ ℕ0
→ (0..^𝑁) ⊆
(0..^(𝑁 +
1))) |
| 27 | 26 | sseld 3602 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑁 ∈ ℕ0
→ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1)))) |
| 28 | 27 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1)))) |
| 29 | 28 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1))) |
| 30 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((#‘𝑇) =
(𝑁 + 1) →
(0..^(#‘𝑇)) =
(0..^(𝑁 +
1))) |
| 31 | 30 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((#‘𝑇) =
(𝑁 + 1) → (𝑖 ∈ (0..^(#‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1)))) |
| 32 | 31 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^(#‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1)))) |
| 33 | 32 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 ∈ (0..^(#‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1)))) |
| 34 | 29, 33 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(#‘𝑇))) |
| 35 | | ccats1val1 13403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝑖 ∈ (0..^(#‘𝑇))) → ((𝑇 ++ 〈“𝑆”〉)‘𝑖) = (𝑇‘𝑖)) |
| 36 | 23, 25, 34, 35 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ 〈“𝑆”〉)‘𝑖) = (𝑇‘𝑖)) |
| 37 | 36 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑇‘𝑖) = ((𝑇 ++ 〈“𝑆”〉)‘𝑖)) |
| 38 | | fzonn0p1p1 12546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0..^(𝑁 + 1))) |
| 39 | 38 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1))) |
| 40 | 30 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → (0..^(#‘𝑇)) = (0..^(𝑁 + 1))) |
| 41 | 40 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (0..^(#‘𝑇)) = (0..^(𝑁 + 1))) |
| 42 | 39, 41 | eleqtrrd 2704 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(#‘𝑇))) |
| 43 | | ccats1val1 13403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ (𝑖 + 1) ∈ (0..^(#‘𝑇))) → ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1))) |
| 44 | 23, 25, 42, 43 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1))) |
| 45 | 44 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑇‘(𝑖 + 1)) = ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))) |
| 46 | 37, 45 | preq12d 4276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))}) |
| 47 | 46 | exp41 638 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑆 ∈ 𝑉 → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))})))) |
| 48 | 47 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))})))) |
| 49 | 48 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))}))) |
| 50 | 49 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (𝑖 ∈ (0..^𝑁) → {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))})) |
| 51 | 50 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))}) |
| 52 | 51 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
| 53 | 52 | ralbidva 2985 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
| 54 | 53 | biimpd 219 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
| 55 | 54 | ex 450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → (∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸))) |
| 56 | 55 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸))) |
| 57 | 56 | 3impia 1261 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
| 58 | 57 | imp 445 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
| 59 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((#‘𝑇) =
(𝑁 + 1) →
((#‘𝑇) − 1) =
((𝑁 + 1) −
1)) |
| 60 | 59 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → ((#‘𝑇) − 1) = ((𝑁 + 1) − 1)) |
| 61 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 62 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 1 ∈
ℂ |
| 63 | | pncan 10287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 64 | 61, 62, 63 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 1)
= 𝑁) |
| 65 | 64 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁) |
| 66 | 60, 65 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → ((#‘𝑇) − 1) = 𝑁) |
| 67 | 66 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → (𝑇‘((#‘𝑇) − 1)) = (𝑇‘𝑁)) |
| 68 | | lsw 13351 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑇 ∈ Word 𝑉 → ( lastS ‘𝑇) = (𝑇‘((#‘𝑇) − 1))) |
| 69 | 68 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → ( lastS ‘𝑇) = (𝑇‘((#‘𝑇) − 1))) |
| 70 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → 𝑇 ∈ Word 𝑉) |
| 71 | | fzonn0p1 12544 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0..^(𝑁 + 1))) |
| 72 | 71 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1))) |
| 73 | 30 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((#‘𝑇) =
(𝑁 + 1) → (𝑁 ∈ (0..^(#‘𝑇)) ↔ 𝑁 ∈ (0..^(𝑁 + 1)))) |
| 74 | 73 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → (𝑁 ∈ (0..^(#‘𝑇)) ↔ 𝑁 ∈ (0..^(𝑁 + 1)))) |
| 75 | 72, 74 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(#‘𝑇))) |
| 76 | | ccats1val1 13403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ (0..^(#‘𝑇))) → ((𝑇 ++ 〈“𝑆”〉)‘𝑁) = (𝑇‘𝑁)) |
| 77 | 70, 24, 75, 76 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → ((𝑇 ++ 〈“𝑆”〉)‘𝑁) = (𝑇‘𝑁)) |
| 78 | 67, 69, 77 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → ( lastS ‘𝑇) = ((𝑇 ++ 〈“𝑆”〉)‘𝑁)) |
| 79 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → (#‘𝑇) = (𝑁 + 1)) |
| 80 | 79 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → (𝑁 + 1) = (#‘𝑇)) |
| 81 | 80 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → (𝑁 + 1) = (#‘𝑇)) |
| 82 | | ccats1val2 13404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ (𝑁 + 1) = (#‘𝑇)) → ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1)) = 𝑆) |
| 83 | 70, 24, 81, 82 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1)) = 𝑆) |
| 84 | 83 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → 𝑆 = ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))) |
| 85 | 78, 84 | preq12d 4276 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → {( lastS ‘𝑇), 𝑆} = {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))}) |
| 86 | 85 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → ({( lastS ‘𝑇), 𝑆} ∈ 𝐸 ↔ {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
| 87 | 86 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({( lastS
‘𝑇), 𝑆} ∈ 𝐸 → (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1))) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
| 88 | 87 | exp4c 636 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({( lastS
‘𝑇), 𝑆} ∈ 𝐸 → (𝑆 ∈ 𝑉 → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)))) |
| 89 | 88 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸))) |
| 90 | 89 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
| 91 | 90 | com12 32 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
| 92 | 91 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
| 93 | 92 | imp 445 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸) |
| 94 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑁 → ((𝑇 ++ 〈“𝑆”〉)‘𝑖) = ((𝑇 ++ 〈“𝑆”〉)‘𝑁)) |
| 95 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑁 → (𝑖 + 1) = (𝑁 + 1)) |
| 96 | 95 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑁 → ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1)) = ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))) |
| 97 | 94, 96 | preq12d 4276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑁 → {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} = {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))}) |
| 98 | 97 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑁 → ({((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
| 99 | 98 | ralsng 4218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (∀𝑖 ∈
{𝑁} {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
| 100 | 99 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ {𝑁} {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
| 101 | 93, 100 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ {𝑁} {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
| 102 | | ralunb 3794 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑖 ∈
((0..^𝑁) ∪ {𝑁}){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {𝑁} {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
| 103 | 58, 101, 102 | sylanbrc 698 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
| 104 | | elnn0uz 11725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈
(ℤ≥‘0)) |
| 105 | | eluzfz2 12349 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘0) → 𝑁 ∈ (0...𝑁)) |
| 106 | 104, 105 | sylbi 207 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0...𝑁)) |
| 107 | | fzelp1 12393 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ (0...𝑁) → 𝑁 ∈ (0...(𝑁 + 1))) |
| 108 | | fzosplit 12501 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ (0...(𝑁 + 1)) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1)))) |
| 109 | 106, 107,
108 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (0..^(𝑁 + 1)) =
((0..^𝑁) ∪ (𝑁..^(𝑁 + 1)))) |
| 110 | | nn0z 11400 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 111 | | fzosn 12538 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℤ → (𝑁..^(𝑁 + 1)) = {𝑁}) |
| 112 | 110, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (𝑁..^(𝑁 + 1)) = {𝑁}) |
| 113 | 112 | uneq2d 3767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ ((0..^𝑁) ∪
(𝑁..^(𝑁 + 1))) = ((0..^𝑁) ∪ {𝑁})) |
| 114 | 109, 113 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (0..^(𝑁 + 1)) =
((0..^𝑁) ∪ {𝑁})) |
| 115 | 114 | ad2antrl 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
| 116 | 115 | raleqdv 3144 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
| 117 | 103, 116 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
| 118 | | ccatlen 13360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑇 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉) → (#‘(𝑇 ++ 〈“𝑆”〉)) = ((#‘𝑇) + (#‘〈“𝑆”〉))) |
| 119 | 5, 20, 118 | syl2an 494 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (#‘(𝑇 ++ 〈“𝑆”〉)) = ((#‘𝑇) + (#‘〈“𝑆”〉))) |
| 120 | 119 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → ((#‘(𝑇 ++ 〈“𝑆”〉)) − 1) =
(((#‘𝑇) +
(#‘〈“𝑆”〉)) − 1)) |
| 121 | | simpl2 1065 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (#‘𝑇) = (𝑁 + 1)) |
| 122 | | s1len 13385 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(#‘〈“𝑆”〉) = 1 |
| 123 | 122 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (#‘〈“𝑆”〉) =
1) |
| 124 | 121, 123 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → ((#‘𝑇) + (#‘〈“𝑆”〉)) = ((𝑁 + 1) + 1)) |
| 125 | 124 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (((#‘𝑇) + (#‘〈“𝑆”〉)) − 1) = (((𝑁 + 1) + 1) −
1)) |
| 126 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 127 | 126 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
| 128 | | pncan 10287 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 + 1) ∈ ℂ ∧ 1
∈ ℂ) → (((𝑁
+ 1) + 1) − 1) = (𝑁 +
1)) |
| 129 | 127, 62, 128 | sylancl 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (((𝑁 + 1) + 1)
− 1) = (𝑁 +
1)) |
| 130 | 129 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1)) |
| 131 | 120, 125,
130 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → ((#‘(𝑇 ++ 〈“𝑆”〉)) − 1) = (𝑁 + 1)) |
| 132 | 131 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) − 1)) = (0..^(𝑁 + 1))) |
| 133 | 132 | raleqdv 3144 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
| 134 | 117, 133 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
| 135 | 18, 22, 134 | 3jca 1242 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → ((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
| 136 | 119, 124 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)) |
| 137 | 135, 136 | jca 554 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))) |
| 138 | 137 | ex 450 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ Word 𝑉 ∧ (#‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
| 139 | 4, 138 | syl 17 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
| 140 | 139 | expd 452 |
. . . . . . . . 9
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 → ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))))) |
| 141 | 140 | com12 32 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))))) |
| 142 | 141 | adantl 482 |
. . . . . . 7
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
→ (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))))) |
| 143 | 142 | imp 445 |
. . . . . 6
⊢ (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
| 144 | | iswwlksn 26730 |
. . . . . . . . . 10
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑇 ++
〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ 〈“𝑆”〉) ∈ (WWalks‘𝐺) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
| 145 | 126, 144 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ ((𝑇 ++
〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ 〈“𝑆”〉) ∈ (WWalks‘𝐺) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
| 146 | 145 | adantl 482 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
→ ((𝑇 ++
〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ 〈“𝑆”〉) ∈ (WWalks‘𝐺) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
| 147 | 1, 3 | iswwlks 26728 |
. . . . . . . . 9
⊢ ((𝑇 ++ 〈“𝑆”〉) ∈
(WWalks‘𝐺) ↔
((𝑇 ++ 〈“𝑆”〉) ≠ ∅
∧ (𝑇 ++
〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
| 148 | 147 | anbi1i 731 |
. . . . . . . 8
⊢ (((𝑇 ++ 〈“𝑆”〉) ∈
(WWalks‘𝐺) ∧
(#‘(𝑇 ++
〈“𝑆”〉)) = ((𝑁 + 1) + 1)) ↔ (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))) |
| 149 | 146, 148 | syl6bb 276 |
. . . . . . 7
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
→ ((𝑇 ++
〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
| 150 | 149 | adantr 481 |
. . . . . 6
⊢ (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (#‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
| 151 | 143, 150 | sylibrd 249 |
. . . . 5
⊢ (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺))) |
| 152 | 151 | ex 450 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
→ (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
| 153 | 152 | 3adant3 1081 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0
∧ 𝑇 ∈ Word 𝑉) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
| 154 | 2, 153 | mpcom 38 |
. 2
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺))) |
| 155 | 154 | 3impib 1262 |
1
⊢ ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆 ∈ 𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺)) |