Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrtermorngc Structured version   Visualization version   GIF version

Theorem zrtermorngc 42001
Description: The zero ring is a terminal object in the category of nonunital rings. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrinitorngc.u (𝜑𝑈𝑉)
zrinitorngc.c 𝐶 = (RngCat‘𝑈)
zrinitorngc.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
zrinitorngc.e (𝜑𝑍𝑈)
Assertion
Ref Expression
zrtermorngc (𝜑𝑍 ∈ (TermO‘𝐶))

Proof of Theorem zrtermorngc
Dummy variables 𝑥 𝑎 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrinitorngc.c . . . . . . . . . 10 𝐶 = (RngCat‘𝑈)
2 eqid 2622 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
3 zrinitorngc.u . . . . . . . . . 10 (𝜑𝑈𝑉)
41, 2, 3rngcbas 41965 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
54eleq2d 2687 . . . . . . . 8 (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Rng)))
6 elin 3796 . . . . . . . . 9 (𝑟 ∈ (𝑈 ∩ Rng) ↔ (𝑟𝑈𝑟 ∈ Rng))
76simprbi 480 . . . . . . . 8 (𝑟 ∈ (𝑈 ∩ Rng) → 𝑟 ∈ Rng)
85, 7syl6bi 243 . . . . . . 7 (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Rng))
98imp 445 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Rng)
10 zrinitorngc.z . . . . . . 7 (𝜑𝑍 ∈ (Ring ∖ NzRing))
1110adantr 481 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing))
12 eqid 2622 . . . . . . 7 (Base‘𝑟) = (Base‘𝑟)
13 eqid 2622 . . . . . . 7 (0g𝑍) = (0g𝑍)
14 eqid 2622 . . . . . . 7 (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))
1512, 13, 14c0rnghm 41913 . . . . . 6 ((𝑟 ∈ Rng ∧ 𝑍 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍))
169, 11, 15syl2anc 693 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍))
17 simpr 477 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍))
183adantr 481 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑈𝑉)
19 eqid 2622 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
20 simpr 477 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶))
21 zrinitorngc.e . . . . . . . . . . . . 13 (𝜑𝑍𝑈)
22 eldifi 3732 . . . . . . . . . . . . . 14 (𝑍 ∈ (Ring ∖ NzRing) → 𝑍 ∈ Ring)
23 ringrng 41879 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring → 𝑍 ∈ Rng)
2410, 22, 233syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Rng)
2521, 24elind 3798 . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑈 ∩ Rng))
2625, 4eleqtrrd 2704 . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
2726adantr 481 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Base‘𝐶))
281, 2, 18, 19, 20, 27rngchom 41967 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟(Hom ‘𝐶)𝑍) = (𝑟 RngHomo 𝑍))
2928eqcomd 2628 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟 RngHomo 𝑍) = (𝑟(Hom ‘𝐶)𝑍))
3029eleq2d 2687 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍)))
3130biimpa 501 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍))
3228eleq2d 2687 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ ∈ (𝑟 RngHomo 𝑍)))
33 eqid 2622 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
3412, 33rnghmf 41899 . . . . . . . . . 10 ( ∈ (𝑟 RngHomo 𝑍) → :(Base‘𝑟)⟶(Base‘𝑍))
3532, 34syl6bi 243 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → :(Base‘𝑟)⟶(Base‘𝑍)))
3635adantr 481 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → :(Base‘𝑟)⟶(Base‘𝑍)))
37 ffn 6045 . . . . . . . . . . 11 (:(Base‘𝑟)⟶(Base‘𝑍) → Fn (Base‘𝑟))
3837adantl 482 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → Fn (Base‘𝑟))
39 fvex 6201 . . . . . . . . . . . 12 (0g𝑍) ∈ V
4039, 14fnmpti 6022 . . . . . . . . . . 11 (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) Fn (Base‘𝑟)
4140a1i 11 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) Fn (Base‘𝑟))
4233, 130ringbas 41871 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ (Ring ∖ NzRing) → (Base‘𝑍) = {(0g𝑍)})
4310, 42syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝑍) = {(0g𝑍)})
4443adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (Base‘𝐶)) → (Base‘𝑍) = {(0g𝑍)})
4544feq3d 6032 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (Base‘𝐶)) → (:(Base‘𝑟)⟶(Base‘𝑍) ↔ :(Base‘𝑟)⟶{(0g𝑍)}))
46 fvconst 6431 . . . . . . . . . . . . . . 15 ((:(Base‘𝑟)⟶{(0g𝑍)} ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = (0g𝑍))
4746ex 450 . . . . . . . . . . . . . 14 (:(Base‘𝑟)⟶{(0g𝑍)} → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍)))
4845, 47syl6bi 243 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (Base‘𝐶)) → (:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍))))
4948adantr 481 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍))))
5049imp31 448 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = (0g𝑍))
51 eqidd 2623 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))
52 eqidd 2623 . . . . . . . . . . . . 13 ((𝑎 ∈ (Base‘𝑟) ∧ 𝑥 = 𝑎) → (0g𝑍) = (0g𝑍))
53 id 22 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → 𝑎 ∈ (Base‘𝑟))
5439a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → (0g𝑍) ∈ V)
5551, 52, 53, 54fvmptd 6288 . . . . . . . . . . . 12 (𝑎 ∈ (Base‘𝑟) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎) = (0g𝑍))
5655adantl 482 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎) = (0g𝑍))
5750, 56eqtr4d 2659 . . . . . . . . . 10 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎))
5838, 41, 57eqfnfvd 6314 . . . . . . . . 9 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))
5958ex 450 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (:(Base‘𝑟)⟶(Base‘𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
6036, 59syld 47 . . . . . . 7 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
6160alrimiv 1855 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) → ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
6217, 31, 613jca 1242 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))))
6316, 62mpdan 702 . . . 4 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))))
64 eleq1 2689 . . . . 5 ( = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍)))
6564eqeu 3377 . . . 4 (((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RngHomo 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))) → ∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
6663, 65syl 17 . . 3 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
6766ralrimiva 2966 . 2 (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
681rngccat 41978 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
693, 68syl 17 . . 3 (𝜑𝐶 ∈ Cat)
702, 19, 69, 26istermo 16651 . 2 (𝜑 → (𝑍 ∈ (TermO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑟(Hom ‘𝐶)𝑍)))
7167, 70mpbird 247 1 (𝜑𝑍 ∈ (TermO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  ∃!weu 2470  wral 2912  Vcvv 3200  cdif 3571  cin 3573  {csn 4177  cmpt 4729   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  0gc0g 16100  Catccat 16325  TermOctermo 16639  Ringcrg 18547  NzRingcnzr 19257  Rngcrng 41874   RngHomo crngh 41885  RngCatcrngc 41957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-hom 15966  df-cco 15967  df-0g 16102  df-cat 16329  df-cid 16330  df-homf 16331  df-ssc 16470  df-resc 16471  df-subc 16472  df-termo 16642  df-estrc 16763  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-nzr 19258  df-mgmhm 41779  df-rng0 41875  df-rnghomo 41887  df-rngc 41959
This theorem is referenced by:  zrzeroorngc  42002
  Copyright terms: Public domain W3C validator