ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemstep GIF version

Theorem bezoutlemstep 10386
Description: Lemma for Bézout's identity. This is the induction step for the proof by induction. (Contributed by Jim Kingdon, 3-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemstep.is-bezout (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
bezoutlemstep.a (𝜃𝐴 ∈ ℕ0)
bezoutlemstep.b (𝜃𝐵 ∈ ℕ0)
bezoutlemstep.w (𝜃𝑊 ∈ ℕ)
bezoutlemstep.y-is-bezout (𝜃 → [𝑦 / 𝑟]𝜑)
bezoutlemstep.y-nn0 (𝜃𝑦 ∈ ℕ0)
bezoutlemstep.w-is-bezout (𝜃[𝑊 / 𝑟]𝜑)
bezoutlemstep.sub-gcd (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)))
bezoutlemstep.hyp ((𝜃[(𝑦 mod 𝑊) / 𝑟]𝜑) → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑))
bezoutlemstep.thx 𝑥𝜃
bezoutlemstep.thr 𝑟𝜃
Assertion
Ref Expression
bezoutlemstep (𝜃 → ∃𝑟 ∈ ℕ0 ([𝑊 / 𝑥]𝜓𝜑))
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡   𝐵,𝑟,𝑠,𝑡   𝑊,𝑟,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑦   𝜑,𝑧   𝜑,𝑠,𝑡   𝜓,𝑧   𝜃,𝑧   𝜃,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑟)   𝜓(𝑥,𝑦,𝑡,𝑠,𝑟)   𝜃(𝑥,𝑦,𝑟)   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)

Proof of Theorem bezoutlemstep
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemstep.is-bezout . . . 4 (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
2 bezoutlemstep.a . . . 4 (𝜃𝐴 ∈ ℕ0)
3 bezoutlemstep.b . . . 4 (𝜃𝐵 ∈ ℕ0)
4 bezoutlemstep.w . . . 4 (𝜃𝑊 ∈ ℕ)
5 bezoutlemstep.y-is-bezout . . . 4 (𝜃 → [𝑦 / 𝑟]𝜑)
6 bezoutlemstep.y-nn0 . . . 4 (𝜃𝑦 ∈ ℕ0)
7 bezoutlemstep.w-is-bezout . . . 4 (𝜃[𝑊 / 𝑟]𝜑)
81, 2, 3, 4, 5, 6, 7bezoutlemnewy 10385 . . 3 (𝜃[(𝑦 mod 𝑊) / 𝑟]𝜑)
9 bezoutlemstep.hyp . . 3 ((𝜃[(𝑦 mod 𝑊) / 𝑟]𝜑) → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑))
108, 9mpdan 412 . 2 (𝜃 → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑))
11 bezoutlemstep.thr . . 3 𝑟𝜃
12 eqidd 2082 . . . . . 6 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → (𝑦 mod 𝑊) = (𝑦 mod 𝑊))
136nn0zd 8467 . . . . . . . 8 (𝜃𝑦 ∈ ℤ)
1413ad2antrr 471 . . . . . . 7 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → 𝑦 ∈ ℤ)
154ad2antrr 471 . . . . . . 7 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → 𝑊 ∈ ℕ)
1613, 4zmodcld 9347 . . . . . . . 8 (𝜃 → (𝑦 mod 𝑊) ∈ ℕ0)
1716ad2antrr 471 . . . . . . 7 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → (𝑦 mod 𝑊) ∈ ℕ0)
18 zq 8711 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
1914, 18syl 14 . . . . . . . 8 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → 𝑦 ∈ ℚ)
2015nnzd 8468 . . . . . . . . 9 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → 𝑊 ∈ ℤ)
21 zq 8711 . . . . . . . . 9 (𝑊 ∈ ℤ → 𝑊 ∈ ℚ)
2220, 21syl 14 . . . . . . . 8 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → 𝑊 ∈ ℚ)
2315nngt0d 8082 . . . . . . . 8 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → 0 < 𝑊)
24 modqlt 9335 . . . . . . . 8 ((𝑦 ∈ ℚ ∧ 𝑊 ∈ ℚ ∧ 0 < 𝑊) → (𝑦 mod 𝑊) < 𝑊)
2519, 22, 23, 24syl3anc 1169 . . . . . . 7 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → (𝑦 mod 𝑊) < 𝑊)
26 modremain 10329 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑊 ∈ ℕ ∧ ((𝑦 mod 𝑊) ∈ ℕ0 ∧ (𝑦 mod 𝑊) < 𝑊)) → ((𝑦 mod 𝑊) = (𝑦 mod 𝑊) ↔ ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦))
2714, 15, 17, 25, 26syl112anc 1173 . . . . . 6 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → ((𝑦 mod 𝑊) = (𝑦 mod 𝑊) ↔ ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦))
2812, 27mpbid 145 . . . . 5 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)
29 simplrl 501 . . . . . . . . . . . . . 14 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → [(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓)
30 bezoutlemstep.thx . . . . . . . . . . . . . . . . 17 𝑥𝜃
31 bezoutlemstep.sub-gcd . . . . . . . . . . . . . . . . . . 19 (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)))
3231sbcbii 2873 . . . . . . . . . . . . . . . . . 18 ([𝑊 / 𝑦]𝜓[𝑊 / 𝑦]𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)))
33 breq2 3789 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑊 → (𝑧𝑦𝑧𝑊))
3433anbi2d 451 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑊 → ((𝑧𝑥𝑧𝑦) ↔ (𝑧𝑥𝑧𝑊)))
3534imbi2d 228 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑊 → ((𝑧𝑟 → (𝑧𝑥𝑧𝑦)) ↔ (𝑧𝑟 → (𝑧𝑥𝑧𝑊))))
3635ralbidv 2368 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑊 → (∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑊))))
3736sbcieg 2846 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ ℕ → ([𝑊 / 𝑦]𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑊))))
384, 37syl 14 . . . . . . . . . . . . . . . . . 18 (𝜃 → ([𝑊 / 𝑦]𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑊))))
3932, 38syl5bb 190 . . . . . . . . . . . . . . . . 17 (𝜃 → ([𝑊 / 𝑦]𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑊))))
4030, 39sbcbid 2871 . . . . . . . . . . . . . . . 16 (𝜃 → ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓[(𝑦 mod 𝑊) / 𝑥]𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑊))))
41 breq2 3789 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑦 mod 𝑊) → (𝑧𝑥𝑧 ∥ (𝑦 mod 𝑊)))
4241anbi1d 452 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 mod 𝑊) → ((𝑧𝑥𝑧𝑊) ↔ (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊)))
4342imbi2d 228 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 mod 𝑊) → ((𝑧𝑟 → (𝑧𝑥𝑧𝑊)) ↔ (𝑧𝑟 → (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊))))
4443ralbidv 2368 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦 mod 𝑊) → (∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑊)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊))))
4544sbcieg 2846 . . . . . . . . . . . . . . . . 17 ((𝑦 mod 𝑊) ∈ ℕ0 → ([(𝑦 mod 𝑊) / 𝑥]𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑊)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊))))
4616, 45syl 14 . . . . . . . . . . . . . . . 16 (𝜃 → ([(𝑦 mod 𝑊) / 𝑥]𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑊)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊))))
4740, 46bitrd 186 . . . . . . . . . . . . . . 15 (𝜃 → ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊))))
4847ad3antrrr 475 . . . . . . . . . . . . . 14 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊))))
4929, 48mpbid 145 . . . . . . . . . . . . 13 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊)))
5049r19.21bi 2449 . . . . . . . . . . . 12 (((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑟 → (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊)))
5150imp 122 . . . . . . . . . . 11 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → (𝑧 ∥ (𝑦 mod 𝑊) ∧ 𝑧𝑊))
5251simprd 112 . . . . . . . . . 10 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → 𝑧𝑊)
53 simplr 496 . . . . . . . . . . . . . . 15 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → 𝑧 ∈ ℕ0)
5453nn0zd 8467 . . . . . . . . . . . . . 14 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → 𝑧 ∈ ℤ)
55 simprl 497 . . . . . . . . . . . . . . 15 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑞 ∈ ℤ)
5655ad2antrr 471 . . . . . . . . . . . . . 14 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → 𝑞 ∈ ℤ)
5720ad3antrrr 475 . . . . . . . . . . . . . 14 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → 𝑊 ∈ ℤ)
58 dvdsmultr2 10235 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑊 ∈ ℤ) → (𝑧𝑊𝑧 ∥ (𝑞 · 𝑊)))
5954, 56, 57, 58syl3anc 1169 . . . . . . . . . . . . 13 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → (𝑧𝑊𝑧 ∥ (𝑞 · 𝑊)))
6052, 59mpd 13 . . . . . . . . . . . 12 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → 𝑧 ∥ (𝑞 · 𝑊))
6151simpld 110 . . . . . . . . . . . 12 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → 𝑧 ∥ (𝑦 mod 𝑊))
6256, 57zmulcld 8475 . . . . . . . . . . . . 13 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → (𝑞 · 𝑊) ∈ ℤ)
6317ad3antrrr 475 . . . . . . . . . . . . . 14 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → (𝑦 mod 𝑊) ∈ ℕ0)
6463nn0zd 8467 . . . . . . . . . . . . 13 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → (𝑦 mod 𝑊) ∈ ℤ)
65 dvds2add 10229 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ (𝑞 · 𝑊) ∈ ℤ ∧ (𝑦 mod 𝑊) ∈ ℤ) → ((𝑧 ∥ (𝑞 · 𝑊) ∧ 𝑧 ∥ (𝑦 mod 𝑊)) → 𝑧 ∥ ((𝑞 · 𝑊) + (𝑦 mod 𝑊))))
6654, 62, 64, 65syl3anc 1169 . . . . . . . . . . . 12 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → ((𝑧 ∥ (𝑞 · 𝑊) ∧ 𝑧 ∥ (𝑦 mod 𝑊)) → 𝑧 ∥ ((𝑞 · 𝑊) + (𝑦 mod 𝑊))))
6760, 61, 66mp2and 423 . . . . . . . . . . 11 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → 𝑧 ∥ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)))
68 simprr 498 . . . . . . . . . . . 12 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)
6968ad2antrr 471 . . . . . . . . . . 11 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)
7067, 69breqtrd 3809 . . . . . . . . . 10 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → 𝑧𝑦)
7152, 70jca 300 . . . . . . . . 9 ((((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) ∧ 𝑧𝑟) → (𝑧𝑊𝑧𝑦))
7271ex 113 . . . . . . . 8 (((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) ∧ 𝑧 ∈ ℕ0) → (𝑧𝑟 → (𝑧𝑊𝑧𝑦)))
7372ralrimiva 2434 . . . . . . 7 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑊𝑧𝑦)))
7431sbcbii 2873 . . . . . . . . 9 ([𝑊 / 𝑥]𝜓[𝑊 / 𝑥]𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)))
75 breq2 3789 . . . . . . . . . . . . . 14 (𝑥 = 𝑊 → (𝑧𝑥𝑧𝑊))
7675anbi1d 452 . . . . . . . . . . . . 13 (𝑥 = 𝑊 → ((𝑧𝑥𝑧𝑦) ↔ (𝑧𝑊𝑧𝑦)))
7776imbi2d 228 . . . . . . . . . . . 12 (𝑥 = 𝑊 → ((𝑧𝑟 → (𝑧𝑥𝑧𝑦)) ↔ (𝑧𝑟 → (𝑧𝑊𝑧𝑦))))
7877ralbidv 2368 . . . . . . . . . . 11 (𝑥 = 𝑊 → (∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑊𝑧𝑦))))
7978sbcieg 2846 . . . . . . . . . 10 (𝑊 ∈ ℕ → ([𝑊 / 𝑥]𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑊𝑧𝑦))))
804, 79syl 14 . . . . . . . . 9 (𝜃 → ([𝑊 / 𝑥]𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑊𝑧𝑦))))
8174, 80syl5bb 190 . . . . . . . 8 (𝜃 → ([𝑊 / 𝑥]𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑊𝑧𝑦))))
8281ad3antrrr 475 . . . . . . 7 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ([𝑊 / 𝑥]𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑊𝑧𝑦))))
8373, 82mpbird 165 . . . . . 6 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → [𝑊 / 𝑥]𝜓)
84 simplrr 502 . . . . . 6 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝜑)
8583, 84jca 300 . . . . 5 ((((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ([𝑊 / 𝑥]𝜓𝜑))
8628, 85rexlimddv 2481 . . . 4 (((𝜃𝑟 ∈ ℕ0) ∧ ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑)) → ([𝑊 / 𝑥]𝜓𝜑))
8786exp31 356 . . 3 (𝜃 → (𝑟 ∈ ℕ0 → (([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑) → ([𝑊 / 𝑥]𝜓𝜑))))
8811, 87reximdai 2459 . 2 (𝜃 → (∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑) → ∃𝑟 ∈ ℕ0 ([𝑊 / 𝑥]𝜓𝜑)))
8910, 88mpd 13 1 (𝜃 → ∃𝑟 ∈ ℕ0 ([𝑊 / 𝑥]𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wnf 1389  wcel 1433  [wsb 1685  wral 2348  wrex 2349  [wsbc 2815   class class class wbr 3785  (class class class)co 5532  0cc0 6981   + caddc 6984   · cmul 6986   < clt 7153  cn 8039  0cn0 8288  cz 8351  cq 8704   mod cmo 9324  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196
This theorem is referenced by:  bezoutlemmain  10387
  Copyright terms: Public domain W3C validator