ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nprm GIF version

Theorem nprm 10505
Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
nprm ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ)

Proof of Theorem nprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 8628 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
21adantr 270 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
32zred 8469 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
4 eluz2b2 8690 . . . . . 6 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 1 < 𝐵))
54simprbi 269 . . . . 5 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
65adantl 271 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝐵)
7 eluzelz 8628 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
87adantl 271 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
98zred 8469 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℝ)
10 eluz2nn 8657 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
1110adantr 270 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ)
1211nngt0d 8082 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 0 < 𝐴)
13 ltmulgt11 7942 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐴 · 𝐵)))
143, 9, 12, 13syl3anc 1169 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (1 < 𝐵𝐴 < (𝐴 · 𝐵)))
156, 14mpbid 145 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 < (𝐴 · 𝐵))
163, 15ltned 7224 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ≠ (𝐴 · 𝐵))
17 dvdsmul1 10217 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
181, 7, 17syl2an 283 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∥ (𝐴 · 𝐵))
19 isprm4 10501 . . . . . . 7 ((𝐴 · 𝐵) ∈ ℙ ↔ ((𝐴 · 𝐵) ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (ℤ‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵))))
2019simprbi 269 . . . . . 6 ((𝐴 · 𝐵) ∈ ℙ → ∀𝑥 ∈ (ℤ‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)))
21 breq1 3788 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∥ (𝐴 · 𝐵) ↔ 𝐴 ∥ (𝐴 · 𝐵)))
22 eqeq1 2087 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = (𝐴 · 𝐵) ↔ 𝐴 = (𝐴 · 𝐵)))
2321, 22imbi12d 232 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) ↔ (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2423rspcv 2697 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (∀𝑥 ∈ (ℤ‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2520, 24syl5 32 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2625adantr 270 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2718, 26mpid 41 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 · 𝐵) ∈ ℙ → 𝐴 = (𝐴 · 𝐵)))
2827necon3ad 2287 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴 ≠ (𝐴 · 𝐵) → ¬ (𝐴 · 𝐵) ∈ ℙ))
2916, 28mpd 13 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wne 2245  wral 2348   class class class wbr 3785  cfv 4922  (class class class)co 5532  cr 6980  0cc0 6981  1c1 6982   · cmul 6986   < clt 7153  cn 8039  2c2 8089  cz 8351  cuz 8619  cdvds 10195  cprime 10489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-prm 10490
This theorem is referenced by:  nprmi  10506  dvdsnprmd  10507  sqnprm  10517
  Copyright terms: Public domain W3C validator